

IEEE HPSR 2021 7th-9th June 2021

Raffaele Bolla Roberto Bruschi Kay Burow Franco Davoli Zied Ghrairi Panagiotis Gouvas Chiara Lombardo

Jane Frances Pajo

Anastasios Zafeiropoulos

Context

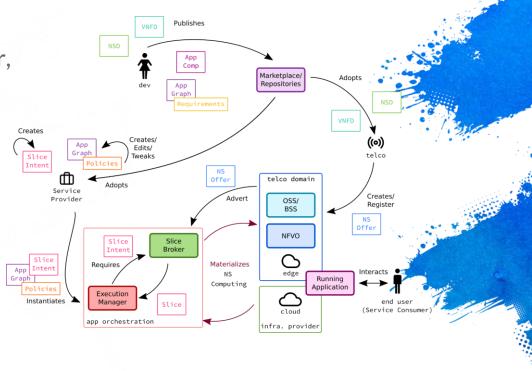
- ×Applications under the Industry 4.0 umbrella would strongly benefit from the 5G widespread diffusion.
- ×Edge computing and slicing can provide the required features by attaching vertical apps terminations in neighboring geographical facilities.
- ×Customized network slices can be customized to perfectly match the desired features and constraints.
- ×Verticals lack the required knowledge.
- ×Telco providers not prone to let third parties orchestrating their resources.

Scope of the Paper

- ×This paper presents an Industry 4.0 application.
- ×We highlighted the role played by the MATILDA solution in making the application successful.
- ×Bridge the gap between the vertical application and the network service domains.

- ×Transform a cloud-native application into a 5G-ready one.
- ×Provide verticals stakeholders with a complete 5G slice.
- ×Allow managing the application in a ZSM fashion.

The MATILDA Vision


×A novel and holistic approach for the overall lifecycle of applications' design, development, deployment and orchestration in a 5G environment

- ×Design and development of 5G-ready applications
- ×Separation of concerns between the orchestration of applications and network services
- ×Application-aware network slices leading to optimal application execution.

Reference Architecture

- ×5G-ready Applications Layer, oriented to software developers.
- ×Applications' Orchestration Layer, oriented to application service providers.
- ×Programmable 5G Infrastructure Slicing and Management Layer, oriented to telecom infrastructure providers.

The Vertical Industry Domain

- ×Simple microservicesbased approach for software developers.
- ×Slice intent metamodel to declare information and requirements to be exploited during the deployment and operation over programmable infrastructure.

- ×A Marketplace to publish 5G-ready apps and VNFs/NSs).
- ×Specify policies and configuration options and formulate a slice intent.
- ×Advanced monitoring and analysis techniques.

The Telco Domain

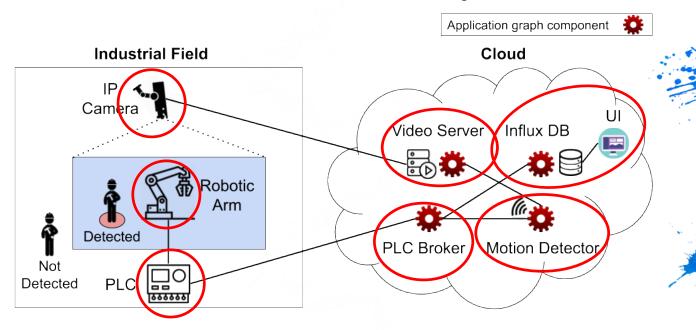
- ×Based on the slice intent, the Telco Provider instantiates the slice by activating the required network management mechanisms.
- ×Instantiation of NSs imported from the MATILDA marketplace.

×An extended OSS controls all the resources/services allowing the entire lifecycle management of the 5G vApp from planning, to first deployment, down to in-life management until their termination.

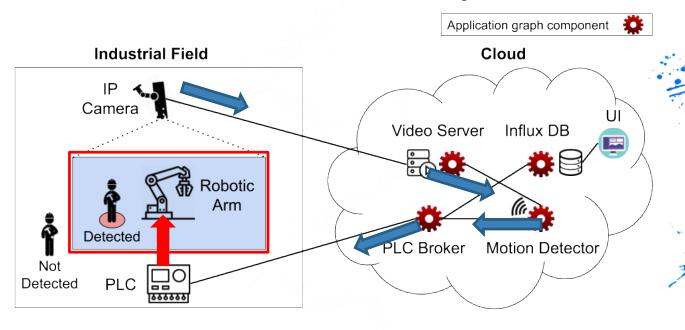
HRC In Assembly Lines

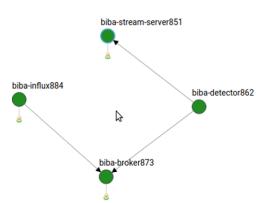
- ×Industry 4.0: the automation processes in industrial environments increase.
- ×Important requirements for safe collaboration between human beings and machines in the workspace environments.

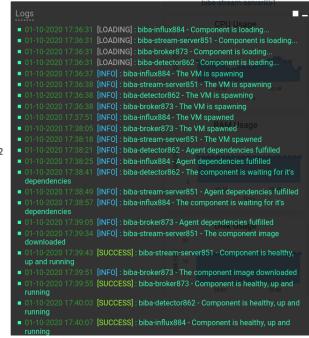
- ×Traditional industrial robot production methods cannot meet the needs of the production safety.
- ×Close contact between robots and workers is a challenging application of Industry 4.0.


Main Industry 4.0 Requirements

- ×Challenge: protect the human operators in a shared workplace.
- ×Detection of possible collisions in real time.
- ×Adaptive machinery control for run-time human collision avoidance.
- ×Human-robot separation distance and relative speeds.


- ×Reduce the safety distance by minimizing the end-to-end latency between movements' detection and reaction time.
- ×Optimization of both the monitoring and the feedback control process.


Use Case Scenario Description



Use Case Scenario Description

Application Graph

KPIs

Operational KPI	Description	Acceptance	Result
	9 % (\$9	Threshold	
Resource Usage	Compute/storage/networking resource usage monitoring	Must be	Available.
Monitoring	(911 - M. O)(32)	available	
Scaling time	Time required to trigger the scaling after threshold was	~ 30s	7s -
	reached		
Availability	Availability of the service upon request	High > 99 %	99.999 %
Reliability	Reliability of an available service	High > 99 %	99.999 %
Network KPI	Description	Acceptance	Result
		Threshold	
Availability	End-to-end continuous measurements of network	> 99 %	99.5 %
	connectivity, collected statistics used to calculate availability		
Reliability	End-to-end continuous measurements of network	>99 %	99.5 %
,	connectivity		
Bandwidth	Required for delivering rich video stream to the Detector	~10 Mbps	~ 12 Mbps
	component in order to make proximity analysis	•	
Jitter	Time-critical communications should be stable and reliable.	< 1 ms	0.7 ms
	Timing variation must be minimal		
Packet Loss	Reliability and high availability of the services in HRC needs	< 0.01 %	< 0.001 %
	to be guaranteed. Therefore, packet loss should be as small		
	as possible.		

Benefits of the MATILDA Platform

- ×Guaranteed reliability and high availability in distributed manufacturing facilities interconnection.
- ×Collection and transfer of real-time information enables a better access to remote process control and process monitoring.

- ×Compliance of end-to-end delay requirements and secure and private end-to-end services support.
- ×Tools to specify microservice's communication needs and to deploy and onboard the application in a very short time.

Conclusions

- ×The verticals' lack of knowledge on 5G and the orchestration complexity may hamper the delivery of truly groundbreaking applications.
- ×MATILDA tackled the integration between the vertical services and the networking environments.

- ×The ZSM platform supports verticals in converting their apps into 5G-ready ones, providing them with a complete 5G network slice.
- ×Assess the solution effectiveness with an Industry 4.0 application including a set of KPIs

