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Abstract—Predictive Maintenance in critical infrastructure is
a fundamental tool for predicting a failure in advance and for
avoiding catastrophic equipment damage that can be prevented
and the time-consuming repair scheduling can be executed in
time. Artificial Intelligence (AI) based predictive maintenance
utilises intelligent data for accurate predictions in order to
make immediate interventions on critical assets. In this paper,
we propose a 5G-enabled Network Application (NetApp) for
predictive maintenance in energy-related critical infrastructures.
The proposed NetApp consists of several containerised com-
ponents responsible for retrieving time-series operational data
from a power plant and detecting potential outliers/anomalies
regarding the operation of energy generators. For the anomaly
detection process, an autoencoder is used. The evaluation results
demonstrate the efficiency of the proposed NetApp.

Index Terms—5G, Artificial Intelligence, Network Application
Autoencoder, Predictive Maintenance

I. INTRODUCTION

Predictive Maintenance is a crucial maintenance tool based
on the possibility of estimating the future values of some
quantities that characterise a system (typically a machine, a
plant, or a production process) through particular mathematical
models in order to identify in advance the anomalies and po-
tential faults. The predictive maintenance applications predict
failure sufficiently ahead of time in order for the decision-
makers to take appropriate actions, such as maintenance,
replacement or even a planned shutdown. These applications
promote savings on machine maintenance and increase produc-
tivity by guaranteeing the maximum uptime of machines. The
manufacturing processes mostly adhere to an assembly line
production, therefore any failure in the assembly line results

in a domino effect, making it essential to evade any point
of failure within the assembly line. By deploying predictive
maintenance solutions, these failures can be evaded or at
least minimised. However, for the most accurate and optimal
prediction, it is required to gather and analyse large amounts
of relevant data within a reasonable time frame. Consequently,
big data analytics and stream processing technologies are key
necessities for predictive maintenance solutions. Predictive
maintenance applications are acknowledged as one of the
fundamental data-driven analytical applications for large-scale
manufacturing industries.

In this paper, we provide a Network Application (NetApp)
for predictive maintenance in power plants, taking full advan-
tage of containerisation, 5G and Artificial Intelligence (AI).
In particular, the proposed NetApp adopts an autoencoder
in order to recognise timely potential anomalies/outliers with
respect to the functionality of industrial devices, paying special
attention to electricity generators. For this purpose, operational
data of the electricity generators are used. This kind of data
is received through Programmable Logic Controllers (PLCs).
Next, the autoencoder receives this kind of data and is respon-
sible for the detection of anomalies.

The rest of this paper is organised as follows. Section II
provides some relevant works in this field. Next, section III
describes the architecture of the proposed NetApp. Next,
section IV focuses on the evaluation of the autoencoder.
Finally, section V concludes this report.

II. RELATED WORK

Several works investigate predictive maintenance applica-
tions and models in critical infrastructures, such as [1]–[5].XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE



Each of the above works is further discussed below.
Sahal et al. [1] utilise a systematic methodology to review

the strengths and weaknesses of existing opensource technolo-
gies for big data and stream processing to establish their usage
for Industry 4.0 use cases. The authors aim to minimise the
technological gap between the requirements of Industry 4.0
applications and the capabilities of available big data and
stream analytics technologies for the use case of predictive
maintenance. Several requirements were identified for the two
selected use cases of predictive maintenance in the areas of
rail transportation and wind energy. Considering use cases in
the area of predictive maintenance, the requirements identified
for a big data processing pipeline in the different phases of
data processing can be described as data collection, analytics,
querying, and storage. The mapping of these requirements
establishes the capabilities of open-source technologies for
big data and stream processing such as distributed queuing
management, big data stream processing platforms, big data
storage technologies and streaming SQL engines The outcome
of this work is a comprehensive set of guidelines and technol-
ogy combinations with a focus on open-source tools.

Shin et al. [2] focus on image-based inspection, where visual
images collected from various devices such as endoscopes and
thermal imaging cameras are employed. The authors developed
an AI model based on a deep learning algorithm, specifically
a convolutional neural network (CNN), utilising the labelled
endoscope image dataset. In this study, the authors’ utilised
AI model-assisted human inspectors in the tasks of detecting
bearing faults for treatment. The effects of AI models are as-
sessed by two-way ANOVA based on two factors existence of
AI assistance and the level of task proficiency. The assessment
was administered on both the performance and perception
of the human inspectors. The performance was evaluated by
establishing the results of the inspection tasks in terms of
specificity, sensitivity, and time efficiency, and perceptions
were evaluated using questionnaires in terms of cognitive load,
intention to reuse, and usefulness. Even though the experiment
was a classification task, areas under the receiver operating
characteristics (AUROC) were not considered because they
could not be calculated for human-involved experiments. The
results demonstrate that all factors, specificity, sensitivity, and
time efficiency, can be enhanced with AI assistance, for both
the generalist group and specialist group. In fact, AI assistance
aids the inspectors even when the performance of AI-only
was worse than human performance. The perception effects
investigated showed positive results.

In [3], the authors propose the use of predictive maintenance
of operational battery energy storage systems (BESSs) as the
next step in safely managing ESSs. Predictive maintenance
comprises monitoring the components of a system for changes
in operating parameters, which may be indicative of a pending
fault. These changes depict the need for maintenance while
the fault is still recoverable. Various industries, including
utilities, utilise this maintenance approach for assets such as
power plants, wind turbines, oil pipelines, and photovoltaic
(PV) systems. However, this approach has yet to be fully

explored and utilised for BESSs. Predictive monitoring can
be interdependent to safer system designs, which are funda-
mental for the real-time mitigation of catastrophic failures.
However, when enforced to BESSs, predictive monitoring can
initiate actions that potentially prevent catastrophic failures
from occurring. This article reviews current safety practices
in BESS development by providing examples of predictive
maintenance approaches in other industries while noting the
key components of an effective approach and describes the
methodologies utilised to identify leading fault indicators.

In [4], Y. Teoh et al. propose a Genetic Algorithm (GA)
as the technique for resource management in assets man-
agement applications for Industry 4.0. The proposed system
architecture contains five layers, including (1) assets, (2)
perception, (3) network, (4) fog computing and (5) cloud
computing. GA was assessed along with MinMin, MaxMin,
FCFS and RoundRobin in FogWorkflowsim to demonstrate
the effectiveness of the proposed technique. The performance
metrics for the evaluation were execution time, cost and
energy. An extensive simulation experiment established that
GA outperformed MinMin, MaxMin, FCFS and RoudRobin
in terms of having the lowest execution time, cost and energy.
The execution time was increased by 0.48%, the cost was
decreased by 5.43% and energy usage was 28.10% lower in
comparison to the second-best results. Lastly, a model for
equipment predictive maintenance had been deployed using
a supervised machine learning algorithm, two-class logistic
regression. The model was able to predict if the manufacturing
equipment failing and produced an early warning alert for the
production line. The training accuracy and testing accuracy for
the model were 95.1% and 94.5% each.

Ahmad et al. in [5] focus on the utilisation of AI techniques
in the energy sector. This study aspires to present a realis-
tic baseline that allows researchers and readers to compare
their AI efforts, ambitions, new state-of-the-art applications,
challenges, and global roles in policy making. The authors
covered three major aspects, 1) the use of AI in solar and
hydrogen power generation; (2) the use of AI in supply
and demand management control; and (3) recent advances
in AI technology. This study investigated how AI techniques
outperform traditional models in controllability, big data han-
dling, cyberattack prevention, smart grid, IoT, robotics, energy
efficiency optimisation, predictive maintenance control, and
computational efficiency. Big data, the development of a
machine learning model, and AI factor an important role in
the future energy market. The authors demonstrate that AI is
becoming a key enabler of the data-related energy industry,
providing a key tool to enhance operational performance and
efficiency. As a result, the energy industry, utilities, power
system operators, and independent power producers require to
concentrate more on AI technologies. Taking into account the
development in information technology, AI and data analysis,
regulatory approvals for new services and products can be
enforced quickly and efficiently.



III. PROPOSED NETAPP ARCHITECTURE

As depictede in Fig. 1, the proposed NetApp is composed
of six components: (a) On-Premises Apache Kafka Engine,
(b) On-Premises Data Collector, (c) Edge Data Collector, (d)
Edge Analytics Engine, (e) Cloud Data Collector and (f)
Cloud Visualisation Engine. Each of the above components
is provided in a container format, taking full advantage of
Docker. Moreover, the containers are orchestrated by an
application orchestrator based on Kubernetes. Each of the
above components is further described below.

Edge Data Collector
Edge Analytics Engine

On-prem Kafka Engine
On-prem Data Collector

Cloud Data Collector
Visualisation Engine

5G Edge5G Smart Factory

5G Core Cloud

Fig. 1: NetApp Architecture

A. On-Premises Apache Kafka Engine

This component focuses on the deployment and preparation
of the Apache Kafka service. Therefore, it plays the role of
message bus, allowing the other components to communicate
with each other in a more easy manner.

B. On-Premises Data Collector

This component is responsible for retrieving the operational
data from the PLCs. To this end, the Modbus/Transmission
Control Protocol (TCP) protocol is utilised. Next, this compo-
nent publishes the operational data to the appropriate Apache
Kafka topic created by the On-Premises Apache Kafka En-
gine.

C. Edge Data Collector

The Edge Data Collector is responsible for the data col-
lection at the edge level. In particular, through Apache
Kafka, it consumes the operational data stored by the On-
Premises Data Collector. Next this data, is used by the Edge
Analytics Engine for the anomaly/intrusion detection
process.

D. Edge Analytics Engine

As illustrated in Fig. 2,the architecture of the Edge Analytics
Engine consists of two main phases, namely (a) Training
Phase and (b) Inference. During the training phase, Edge

Analytics Engine is composed of three modules: (a) Pre-
Processing Module, (b) Feature Engineering Module and (c)
Training Module. The Pre-Processing Module normalises the
time-series operational data, utilising various window sizes.
Next, second module chooses the most informative data sam-
ples for the training procedure. Finally, the training module
is responsible for the training process of the proposed au-
tonecoder. In a similar manner, the Edge Analytics Engine
consists of three modules. First, the Pre-Processing Module
pre-process and normalises the time-series operational data.
The Feature Selection Module, selects the appropriate feature
based on the training process. Next, the Anomaly Detection
Module applies the trained autoencoder and detects potential
anomalies. The architecture of the proposed autoencoder is
illustrated in Fig. 3. ReLu was used as a hidden activation
function, while sigmoid was chosen as teh outpute activation
function. Moreover, the mean squared error is used as a loss
function and teh Adam optimiser was also chosen. Finally,
the Response Module underatakes to publish an anomaly alert
to the appropriate Apache Kafka topic established by the
On-Premises Apache Kafka Engine.
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Fig. 2: Architecture of the Edge Analytics Engine

Input
128 128

64 64

32

Output

Encoder Decoder

Fig. 3: Autoencoder Architecture



E. Cloud Data Collector

The Cloud Data Collector receives the anomaly alerts
published by the Response Module of the Edge Analytics
Engine. In particular, it consumes the alerts from the appro-
priate Apache Kafka topic established by the On-Premises
Apache Kafka Engine.

F. Cloud Visualisation Engine

The Cloud Visualisation Engine visualisation engine re-
ceives the anomaly alerts and visualises them in a table format.
Moreover, it is responsible for providing and visualising
relevant statistics.

IV. EVALUATION RESULTS

This section is devoted to the evaluation analysis of the
proposed NetApp for predictive maintenance in power plants.
Before presenting the evaluation results, the relevant evalua-
tion metrics should be first introduced. More information about
them is given in [6].

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

TPR =
TP

TP + FN
(2)

FPR =
FP

FP + TN
(3)

F1 =
2× TP

2× TP + FP + FN
(4)

Table I and Table II summarise the evaluation results of the
proposed autoencoder compared to other anomaly/outlier de-
tection methods, such as Local Outlier Factor (LOF), Isolation
Forest, One-Class Support Vector Machine (OneClassSVM),
Principal Component Analysis (PCA), Angle-Based Outlier
Detection (ABOD), Stochastic Outlier Selection (SOS). Sev-
eral choices of the window-size were tested. However, the
best performance of the proposed autoencoder is achieved with
window size: 40. Thus, based on the above evaluation metrics,
the proposed autoencoder achieves the performance, while the
worst performance is accomplished by ABOD.

TABLE I: Evaluation Results: Anomaly/Outlier Detection based on Energy
Operational Data with Window Size 20

AI Model Accuracy TPR FPR F1
LOF 0.301 0.303 0.434 0.299
Isolation Forest 0.434 0.432 0.499 0.382
OneClassSVM - Linear 0.428 0.421 0.422 0.421
OneClassSVM - RBF 0.443 0.438 0.455 0.439
PCA 0.527 0.532 0.498 0.501
ABOD 0.188 0.187 0.243 0.122
Proposed Autoencoder 0.865 0.866 0.323 0.861
SOS 0.544 0.505 0.443 0.502

TABLE II: Evaluation Results: Anomaly/Outlier Detection based on Energy
Operational Data with Window Size 40

AI Model Accuracy TPR FPR F1
LOF 0.421 0.402 0.333 0.329
Isolation Forest 0.494 0.448 0.455 0.442
OneClassSVM - Linear 0.422 0.422 0.401 0.421
OneClassSVM - RBF 0.421 0.432 0.413 0.420
PCA 0.545 0.547 0.349 0.522
ABOD 0.187 0.187 0.242 0.117
Proposed Autoencoder 0.866 0.867 0.346 0.862
SOS 0.549 0.515 0.439 0.532

V. CONCLUSIONS

In this paper, we present a 5G-enabled NetApp for predic-
tive maintenance in critical infrastructures. In particular, the
proposed NetApp was applied and tested in a power plant
environment in Greece, utilising time-series operational data.
The goal of the NetApp is to predict anomalies/outliers related
to electricity generators. To this end, an autoencoder is adopted
and Incorporated in the context of the Edge Analytics Engine.
The evaluation analysis demonstrates the efficiency of the
proposed NetApp.
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