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Abstract— The diffusion of the Fifth-Generation (5G) of 
mobile radio networks will be the main driver in the digital 
transformation towards a new hyper-connected society. In 
order to satisfy the stringent demands of 5G-ready applications 
over the limited resources available at the edge, scaling 
mechanisms become crucial to guarantee the performance levels 
envisaged for 5G. Such mechanisms must be able to 
automatically perform according to the real-time user demands, 
the availability of computing resources and the state of Network 
Functions (NFs) and applications. In this context, this paper 
proposes a deep learning model, based on Artificial Neural 
Networks (ANNs), for the dynamic and automated 
orchestration of NFs. The novelty of this model is its 
independence from specific 5G NF implementations; this is due 
to the nature of the Key Performance Indicators (KPIs) used in 
this work, which are related to both execution environment 
(standard “black-box” KPIs) and standard 5G APIs (“white-
box” KPIs). Results obtained on the orchestration of a Session 
Management Function (SMF) reach an accuracy of 97~98% for 
the training and validation phases and above 95% for the 
deployed model, as well as higher overall accuracy by ~5% and 
computational resource savings with respect to a threshold-
based scheme. 

Keywords—5G, Network Management, Machine Learning, 
SMF. 

I. INTRODUCTION 
The Fifth-Generation (5G) of mobile radio networks 

and edge computing technologies is expected to 
constitute the second wave of the Data Revolution [1] 
and to play a key role in the digital transformation 
towards a new hyper-connected society. In order to 
satisfy the stringent demand of 5G-ready applications, 
and to fully exploit the available network and computing 
resources, the distribution of application components 
and Network Functions (NFs) from the cloud to the edge 
of the network will become common practice.  

Differently from cloud ones, edge computing 
facilities usually offer limited computing resources on 
highly heterogeneous hardware. In order to manage such 
resources as efficiently as possible, scaling mechanisms 
become crucial to guarantee the performance levels 
envisaged for 5G (and beyond) applications. However, 
the proper design of such mechanisms is definitely a 
non-trivial task: along with the already mentioned 

limitations of edge datacenters, the lifecycle 
management of network services and applications is 
performed on geographically distributed facilities, it 
must be fully automated and requires the injection and 
update of applications/services (or parts of them) at run-
time, only when, where and for the time needed by 5G 
end-users and connected things. Moreover, the link 
between the Key Performance Indicators (KPIs) 
characterizing NFs/application components and CPUs is 
not straightforward, so that often one of the two 
categories is neglected. Nevertheless, their joint 
utilization would allow for a deeper understanding of the 
dynamics and efficiency of NFs/applications internal 
processes, and their dependency on the underlying 
hardware. 

Nowadays, such mechanisms heavily rely on 
Artificial Intelligence (AI) and Machine Learning (ML) 
techniques for the autonomous, proactive, and cognitive 
management of the lifecycle of 5G applications and 
network functions. Most works in the state of the art on 
scaling decisions propose threshold-based solutions. 
Such thresholds can either be static (as in [2] and [3]) or 
dynamic (as in [4]). Static threshold solutions may lead 
to an oscillating pattern if the load frequently fluctuates 
around the thresholds. Moreover, in these solutions, few 
KPIs are analyzed to trigger the scaling decision. In 
particular, both [2] and [4] exploit only one metric, CPU 
utilization; in [3] CPU usage, RAM usage and Quality 
of Experience (QoE) are adopted. Among others, 
dynamic scaling for the automation of resource re-
allocation is considered in [5], while the authors in [6] 
propose a system to dynamically scale stateful NFs by 
state disaggregation. 

In this framework, this paper presents a Deep 
Learning (DL) model, exploiting Artificial Neural 
Networks (ANNs), for the dynamic and automated 
scaling of NFs and applications according to the Zero-
touch network and Service Management (ZSM) 
paradigm [7]. The model performs the automated 
addition or removal of NF/application instances across 
the geographically distributed edge network, according 
to real-time demands, and is based on a multiclass 



classification able to combine metrics on both the NF 
instance and the computational resources hosting it. The 
use of ML in this context provides two benefits: the 
ability to easily consider the contribution of a large 
number of KPIs and that of achieving higher levels of 
accuracy, as it is not mandatory to divide the feature 
space in a linear fashion.  

This model, based on recent specifications coming 
from the ETSI Experiential Networked Intelligence 
(ENI) standard [8], is not used merely for horizontal 
scaling, but it leverages on the slice-specific network 
and computing resource analytics provided by the 
Network Data Analytics Function (NWDAF) and the 
Management Data Analytics Function (MDAF) for the 
automated allocation of NF/application instances in the 
zones with higher traffic density. In this work, the model 
is applied to the 5G Session Management Function 
(SMF), which, being in charge of the establishment, 
modification and release of user sessions, can hugely 
benefit from the deployment of instances in the 
proximity of the User Equipment (UE). 

The novelty of this work lays in the generated 
dataset, which comprises a large number (with respect 
to the previous works mentioned above) of data from 
two different sources: the execution environment (herein 
Kubernetes) and the 5G Service-based architecture 
(SBA). In further detail, the KPIs are a blend of “black-
box” KPIs (e.g., CPU and memory utilization) and 
“white-box” KPIs (e.g., NF metrics, such as the number 
of Protocol Data Unit (PDU) sessions, etc.). 
Furthermore, since the white-box KPIs are extracted 
from 5G standardized interfaces (via the aforementioned 
analytics) that do not depend on neither the application 
nor the underlying hardware, the model proposed herein 
is both application- and implementation-independent.  

Results obtained on the scaling of the SMF over a 
geographically distributed edge show that the DL model 
training and validation phases reach an accuracy of 
97~98%, with the deployed model, also going above 
95% for most numbers of available samples. 
Furthermore, the presented model is compared to a 
threshold-based one; results show a higher overall 
accuracy by ~5% and a significant saving of 
computational resources for the DL model. 

The remainder of the paper is organized as follows. 
Section II introduces the DL model, while its 
implementation for service scaling is reported in Section 
III. The ML workflow is described in Section IV, with 
the performance of the model training and deployment 
in Sections V and VI, respectively. Finally, conclusions 
are drawn in Section VII. 

II. DEEP LEARNING MODEL 
ANNs follow a bio-inspired approach by learning by 

example; as such, they have been gaining particular 
interest in modelling real-world systems, especially in 
the presence of noise and nonlinearity. There are two 
main approaches for ANN-based predictive modelling: 
(i) Classification, which predicts a category, and (ii) 

Regression, which predicts a quantity, both in a 
supervised fashion. The former approach is the one 
adopted in this work, while the latter, which allows 
introducing traffic forecasting to anticipate the traffic 
needs, is currently under consideration for an extension 
of this paper, with the goal of realizing a proactive 
scaling mechanism allowing for the reduction of the 
time between the need for scaling and the actual action. 
Both approaches aim at learning the function that best 
maps the input variables to the output variables (either 
as a category or as a quantity) through nonlinear 
approximations. 

In this section, we outline the classification problem 
in the context of horizontal service scaling that will be 
used as basis for the ZSM solution’s DL model. In more 
detail, a model is built based on a training dataset (i.e., 
historical data), which is generally organized into a table 
of N rows (i.e., samples) and M+T columns (i.e., M 
features/input variables and T target/output variables); 
note that in the current example T=1. The number of 
features defines the number of neurons in the input layer. 
For a classification problem, the number of neurons in 
the output layer is defined by the number of 
classes/labels C (for instance, there are three classes in 
the sample problem – ScaleIN, Maintain and ScaleOUT 
– hence, C=3); for a regression problem, the number of 
neurons is determined by the number of targets (T). 
Between these two layers, there can be one or more 
hidden layer(s) with a variable number of neurons. In 
DL applications, the deeper the ANN becomes, the more 
complex problems it will be able to solve, but also with 
increased computational complexity. Regarding the 
anatomy of a neuron, the inputs are used to obtain a 
biased, weighted sum that is then fed to the activation 
function to produce the output. Some of the most 
commonly used activation functions include the 
rectified linear unit, sigmoid, softmax and hyperbolic 
tangent. Further details are provided in Section III. The 
optimal ANN structure (i.e., the number of hidden 
layers, neurons per layer and their corresponding 
activation functions) highly depends on the application 
and the dataset. This decision is usually based on 
experience, search strategies [9], Genetic Algorithms 
[10], k-fold cross validation [11], etc. 

The model used in this paper is a feed-forward back-
propagation ANN. It was chosen because of its 
straightforward implementation through Keras and 
Tensorflow and its simplicity. As a matter of fact, since 
the goal is classification, we do not need to use the more 
complicated feed-back ANNs (e.g., Recurrent NNs) 
which are more appropriate when doing regression. This 
simplicity should reflect on the training time which may 
be a sensitive variable for 5G applications with the most 
stringent requirements. Therefore, in future works, when 
comparing different ML models, great consideration 
will be devoted to the training time. The feed-forward 
back-propagation ANN is trained by iteratively updating 
the weights and biases to minimize the error between the 
predicted and expected target values in the dataset. 
Starting with a random initialization, predictions are 



calculated by feeding the data forward through the 
network. Then, computed according to a specific loss 
function (e.g., cross-entropy, mean absolute error, mean 
squared error, among others), the error is propagated 
backwards. The weights and biases are updated 
according to the chosen optimizer and learning rate. This 
forward-backward propagation process is repeated until 
the loss function converges or a specified maximum 
number of iterations is reached. 

Open-source tools (such as scikit-learn [12], 
TensorFlow [13], Keras [14] and PyTorch [15]) are 
already widely available for building DL models in 
Python. In this work, recent versions of TensorFlow 
(which already has a tight integration with Keras) will 
be considered to jointly benefit from the high-level APIs 
of Keras and the low-level control of TensorFlow. 

III. SERVICE SCALING WITH DEEP LEARNING 
The proposed model exploits deep ANNs for the 

zero-touch orchestration of a NF/application instance 
and is meant to be introduced in ETSI ENI-compliant 
network platforms and fed by the metrics and analytics 
from the NWDAF and MDAF. The outcome is the 
automated addition or removal of the instances across 
the geographically distributed edge network according 
to the real-time demands. In particular, the scaling 
problem is modelled as a Multiclass Classification 
problem that seeks to categorize various high-/low-level 
metric combinations into “superstates” relating to 
scaling decisions. 

Let X be the set of (potentially) relevant high-/low-
level metrics, and Y be the scaling decision. The goal is 
to find the function f that best maps X to Y, based on a 
training dataset that consists of historical (X, Y) 
combinations. In a multiclass classification problem, Y 
refers to the label that corresponds to the “superstates” 
that categorize the metric combinations into classes of 
scaling decisions, such as whether to scale in, maintain 
or scale out for a given sample of X. 

Given a training dataset, a ML classification 
algorithm seeks to divide the input space into decision 
regions corresponding to the C discrete classes, and 
builds a model by creating decision boundaries between 
these regions based on the statistical patterns in the 
dataset [16] [17]. It is important to note that the classes 
of a given dataset may not always be exactly separable; 
hence, the goal of the algorithm is to find the model f 
that optimizes the cost function (such as maximizing 
accuracy or minimizing loss, among others). 

Suppose that the random variables X and Y evolve 
over time depending on the service demands, and each 
combined realization or sample (𝒙("), 𝑦(")) in the 
training dataset is indexed in temporal succession, 𝑡 =
0, 1, … . In a probabilistic view of multiclass 
classification, the model f and its parameters are found 
by maximizing the likelihood function 
ℒ({𝑃.𝑦(")/𝒙(")0, 𝑡 = 0, 1, … })  or, equivalently, 
minimizing the loss function, 𝐸 = −log	(ℒ) during the 

training phase, such that f best captures the statistical 
patterns between the samples [16] [9]; further details 
regarding the model we adopted can be found in Section 
V. Once a model has been built, it can then be used to 
automatically classify unlabeled samples of X, for 
instance, with an independent test dataset or in an actual 
production environment. During these phases, the model 
computes the posterior probabilities for each class, 
{𝑃(𝑦 = 𝑐|𝒙), 𝑐 = 1,… , 𝐶} , given the unlabeled input 
data, and the class corresponding to the highest 
𝑃(𝑦 = 𝑐∗|𝒙)  indicates the predicted label for each 
sample. 

An ANN-based classifier is considered in this work 
to capture the statistical patterns between X and Y, in a 
supervised learning approach. This choice is mainly 
motivated by the ANN’s ability in modelling real-world 
systems, especially in the presence of noise and 
nonlinearity. As described in [17], an ANN-based model 
is a “nested” mathematical function 𝑓%&& such that for 
an L-layer network: 

 𝑌 = 𝑓%&&(𝑿) = 𝑓'(⋯𝑓((𝑓)(𝑿))) (1) 

where cases with 𝐿 > 2 (or with more than one hidden 
layer between the input and output layers) are 
considered as deep ANNs. Generally, for layer 𝑙 =
{1,… , 𝐿}, 

 𝑦* = 𝑓*(𝒛) = 𝑔*(𝑾*𝒛 + 𝒃*) (2) 

where 𝒛 is the output of the preceding layer, 𝑔*  is the 
activation function, 𝐖* is the weight matrix and 𝐛* is the 
bias vector. The rows in the matrix 𝐖*  are vectors 
{𝒘*,,! , 𝑚* = 1,…	,𝑀*} , each with the same 
dimensionality as 𝒛, where 𝑀* is the number of neurons 
in layer 𝑙. It can be noted how the output layer generates 
a probability distribution {𝑃(𝑦 = 𝑐|𝒙), 𝑐 = 1,… , 𝐶} , 
based on which the predicted label 𝑦M can be obtained as 
the one corresponding to the highest 𝑃(𝑦 = 𝑐∗|𝒙) value. 

Most of the model parameters shown above are not 
solely learned from the training samples, but also from 
the outputs of the preceding layers, especially in Deep 
Learning applications [17]. In this view, a feed-forward 
backpropagation ANN starts with a random 
initialization of the model parameters and calculates the 
predictions (e.g., with a Maximum Likelihood criterion) 
by feeding the data forward through the network; it then 
computes the error according to a specific loss function 
(e.g., cross-entropy or negative log likelihood) and 
propagates it backwards to update the weights and 
biases. As pointed out in [16], the learning process 
involves solving a nonlinear optimization problem and 
evaluating the derivatives of the loss function with 
respect to the model parameters; backpropagation is a 
technique for efficiently evaluating the gradient of the 
loss function for training feed-forward networks. 

The most popular choices of activation functions in 
recent works are the rectified linear unit (ReLU) and the 
Softmax functions. ReLU is typically used in the hidden 



layers, while the activation function used in the output 
layer highly depends on the application – for instance, 
for a multiclass classification problem, Softmax is 
typically used [17] [9]. As previously anticipated, 
training an ANN entails solving an optimization 
problem – that is, minimizing the loss function. This can 
be performed through a variety of optimization 
algorithms, or the so-called “optimizers”. In this work, 
we use the Adaptive Moment Estimation (Adam) [18]. 

IV. MACHINE LEARNING WORKFLOW APPLIED TO THE 
5G ENVIRONMENT 

This section describes how the service scaling model 
introduced in Section III is applied to the 5G context, 
along with the setup that was used for the training and 
testing trials reported in Sections V and VI. ML 
workflows usually start with Data Collection from one 
or more data sources, carefully selected according to 
their potential relevance to the problem at hand. Since 
the acquired (raw) data may have different formats, 
especially if they come from several sources, the raw 
data need to undergo Pre-processing, in which they are 
cleaned and formatted into a usable dataset, suitably 
structured for the problem; feature analysis, label/target 
definition and splitting of the dataset (into training and 
test sets) are also done in this phase. Once the structured 
dataset is ready, then comes the Modelling phase – 
where the training set is fed to the algorithm to learn the 
model parameters; in some cases, a validation set can be 
used to further refine (e.g., fine-tuning of parameters) 
the model. In the Deployment phase, the resulting model 
is tested with an independent test set, and/or in a 
production environment. 

A. Data Collection 
In this work, we consider the presence of a 

Prometheus database [19] which maintains the time 
series that the NWDAF and the MDAF can obtain from 
the SMF on the connection and mobility management 
tasks and on the NF usage statistics, respectively. The 
testbench used to generate the dataset and validate the 
model is shown in Fig. 1. In particular, for mimicking 
the presence of a 5G network, from the access (including 
the data generated by the users) to the core, we use 
UERANSIM [20] and Free5GC [21], respectively. The 

former is a Linux-based emulator of a complete 5G 
access network, including UEs and gNodeBs, while the 
latter provides a complete 5G core with the individual 
NFs provided in a containerized fashion, including our 
targeted SMF. Both tools are open source; UERANSIM 
is deployed through multiple Virtual Machines (VMs) 
and Free5GC relies on Kubernetes [22]. In each test, the 
number of UEs is randomly selected between 0 and 100 
and gNodeBs vary between 1 and 3, resulting in varying 
system workloads. Furthermore, the 5G core network is 
container-based and runs on top of a Kubernetes cluster. 
Each SMF instance has resources limited to one virtual 
CPU (vCPU) and 512 MB of random-access memory 
(RAM). This configuration has been chosen to reach the 
maximum capacity of an SMF in the tests, and hence, 
the system will need to scale out or add another SMF 
instance. 

The tests have been performed in an offline 
environment, such that each test has a corresponding 
Prometheus export which contains both the white-box 
and the black-box KPIs. In order to retrieve the former 
and passing them to Prometheus, since the current 
support of the REST APIs for events subscription in 
Free5GC NFs is incomplete, we extended the NWDAF 
to access the SMF logs (via the Loki framework). The 
latter are exported from Kubernetes to the Prometheus 
database through cAdvisor [23] which provides data 
regarding resource usage and performance 
characteristics on a container basis. The KPIs are 
exported to Prometheus every 1 second. The Prometheus 
data generated for the aforementioned tests are parsed to 
obtain the necessary features and data samples, then 
aggregated according to the desired structure. As 
previously mentioned, in order to generate a usable 
dataset, the data need to be carefully aggregated with 
consistent timeframes, and then, suitably structured for 
the problem at hand. 

B. Pre-Processing 
By looking at the (created, responded, closed) 

timestamps exported from Prometheus, 8 white-box 
KPIs can be derived per second: number of initiated and 
released Protocol Data Unit (PDU) sessions, number of 
allocated QoS Flow Identifiers (QFIs), user plane path 
changes, N10 and N11 terminations, tracking areas and 
Non-Access Stratum (NAS) interactions. From the data 
exported by cAdvisor, 6 black-box KPIs from the CPU 
utilization (user, system, total) and from the memory 
utilization (rss, working_set, total) are considered. The 
black-box metrics are further processed to obtain the 
average, min and max values per second across all active 
SMF instances, which results in a total of 32 features. 

Data cleaning usually involves handling missing 
and/or invariant data. For instance, in the case of missing 
data, the distribution of the missing values can be 
initially checked; if there are only few missing values, 
one can either drop the samples or use the average value 
of the samples; otherwise, drop the columns with many 
missing values. After cleaning, the number of input 
features to be used in the actual training/testing is 

 
Fig. 1. Testbench used to generate the dataset. 



reduced from 32 to 24 features. Given the structured 
(and cleaned) dataset, it can now be split into training 
and test sets; the former can also be further split for the 
actual training and the intermediate validation. In this 
work, the training set comprises 60% of the samples 
(20% of which was reserved for the validation in the 
model fitting), and the remaining 40% was used in the 
final testing. 

Let us recall that the three classes – ScaleIN, 
Maintain and ScaleOUT – act as “superstates” 
classifying the metric combinations towards the decision 
of whether to scale in, maintain or scale out the SMF 
instances. The input features in the dataset characterize 
the historical metric combinations, while the 
corresponding labels characterize the scaling decisions, 
where the latter is usually based on technical expertise. 

Since the initial dataset is not labelled, we suppose 
that the historical scaling decisions are governed by 
some conditions based on the CPU utilization and the 
number of active instances, and generate the labels 
accordingly. However, it is important to note that in real-
world ML/AI applications such conditions are supposed 
to be unknown to the developer, and learned by the 
model, on the basis of the given features and labels of 
the dataset. The sole purpose of the following conditions 
is to generate a working dataset. 

In more detail, 1-minute moving averages of the CPU 
utilization (=%total) of each SMF instance are obtained 
and the mean across all active instances is considered: 

 𝑀𝑜𝑣𝐴𝑣𝑔_𝐶𝑃𝑈_𝑢𝑡𝚤𝑙UUUUUUUUUUUUUUUUUUUUUUUU(") =
∑ ∑ .%"0"1*	#

(%)2'(%)
#()

*
%(*+,+)

3	×	6(*)
    (3) 

where 𝑇 = 60  (seconds) and 𝑉(")  is the value of 
#SMFs_active at time instant 𝑡. Based on the runtime 
values of 𝑀𝑜𝑣𝐴𝑣𝑔_𝐶𝑃𝑈_𝑢𝑡𝚤𝑙UUUUUUUUUUUUUUUUUUUUUUUU(") , the supposed 
conditions are shown in Fig. 2. 

To better illustrate the service scaling scenario, Fig. 
3 shows how 𝑀𝑜𝑣𝐴𝑣𝑔_𝐶𝑃𝑈_𝑢𝑡𝚤𝑙UUUUUUUUUUUUUUUUUUUUUUUU  and #SMFs_active 
vary with time, as well as the desired scaling decision at 
each instant. It can also be observed that the notifications 
for the need of scaling in/out SMF instances continue 
until the service orchestrator actuates the desired 
decision. 

Finally, it is worth noticing that the dataset we 
generated is purely synthetic. Nevertheless, we reiterate 
once again that our contribution lays in the composition 

of said dataset and not its real values. In the future we 
hope to test the model presented herein on real data. 

V. MODEL TRAINING AND VALIDATION 
In this work, the widely used TensorFlow-Keras 

bundle is adopted for building the ANN-based model. 
With Keras, ANNs can be constructed in a modular and 
fully configurable way using its built-in classes for 
various components (such as the layers, loss functions, 
activation functions and optimizers, among others). It 
also features automatic backpropagation that simplifies 
the training process for the users. 

A Sequential model [24] is considered for the multi-
class classification problem at hand, and it is built by 
basically stacking ANN layers, each with exactly one 
input and output tensor (i.e., multi-dimensional array). 
Dense layers [25] are used in the model – particularly, 2 
fully-connected hidden layers with 24 neurons/layer 
(i.e., set to equal the number of input features, 
dataset.shape[1]–1) and ReLU activation functions, 
then 1 fully-connected output layer with 3 neurons (i.e., 
set to equal the number of classes) and SoftMax 
activation functions. Adam is chosen as optimizer, with 
a learning rate η of 0.01, and default exponential decay 
rates (i.e., β1 = 0.9 and β2 = 0.999) [18]. Lastly, sparse 
categorical crossentropy and sparse categorical 
accuracy are used as loss function and metric, 
respectively, since the labels are not one-hot encoded 
and kept their integer values {0, 1, 2} (i.e., as on the right 
in Fig. 3). 

Now, recalling the anatomy of the neuron, with a 
dense layer (fully connected), the number of inputs 
received by each neuron is equal to the number of 
neurons in the preceding layer, and its output is therefore 
also received by all neurons in the succeeding layer. 
Moreover, each neuron has one bias parameter. With 
this in mind, each hidden layer in the model constructed 
above has a total of 600 (=24 * 24 + 24) trainable 
parameters, while the output layer has 75 (=3 * 24 + 3). 
All in all, the model has 1275 trainable parameters. The 
training set used as input to the model has 4129 (60% of 
the total) samples – 80% of which are used for actual 
training, while the remaining 20% is used for validation. 
Fig. 4 shows the training and validation accuracies 
obtained in 100 epochs. It can be observed that the 

 

Fig. 2. Example of service scaling conditions. 
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model has stable accuracies at around 97~98%. It is also 
interesting to note that with 3 hidden layers, such 
accuracies start to decrease with increasing epochs, 
owing to overfitting. Finally, it is worth mentioning that 
the model was trained on a VM with 4 vCPUs and 8 GB 
of RAM; with this configuration the training phase 
lasted 30.48 seconds. 

VI. MODEL TESTING AND DEPLOYMENT 
This phase comprised the testing of two models: a 

threshold-based model and the ANN model thoroughly 
explained in this text. The former is a static threshold 
model that is based on the one presented in [3]. In 
particular, thresholds are applied to both the black-box 
and the white-box KPIs; eventually the result is decided 
by an OR operator between the two sets. In both cases, 
2753 samples (40% of the total) were used in this phase; 
these samples were never-before-seen samples, in order 
to reflect an actual production environment. One way of 
showing the performance of a classification model is 
through a confusion matrix [17], which summarizes the 
success of predicting the classes of the test samples, with 
one axis indicating the true label and the other the 
predicted label. Figs. 5 and 6 show the confusion 
matrices obtained with the two aforementioned models. 
In both cases we can observe the confusion matrices in 
terms of both the number of samples (Figs. 5(a) and 6(a)) 
and the percentages (Figs. 5(b) and 6(b)). By comparing 
the results shown in Figs. 5(b) and 6(b), it can be 
observed that the ANN-based classifier has a higher 
accuracy than the threshold-based one; in particular, the 
former was able to correctly classify {99.62%, 95.29%, 
97.06%} of the samples belonging to the classes {0, 1, 
2}, respectively.  

It can also be noted in Figs. 5(a) and 6(a) that the 
sample set belonging to class 2 is substantially small 
(~10%) compared to the other two classes; hence, the 
dataset is class imbalanced. This can provide indications 
on which performance metrics to look at. 

Starting from the confusion matrix, different 
performance metrics can be derived – namely, the 
Overall Accuracy, Precision, Recall and F1-score. The 
Overall Accuracy is given by the ratio of the number of 
correctly classified samples to the total number of 
samples. 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∑ 37(89:)-
#	0<	"=>"	>1,?*=>

 (4) 

While this is a great metric for symmetric datasets, it 
is not the proper measure for class imbalanced datasets. 
In such cases, the other three metrics are usually 
adopted. Precision is given by the ratio between the 
number of true positive (TP) predictions and the total 
number of positive predictions (i.e., TP) plus the false 
positive (FP) predictions. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑦 = 𝑐) = 37(89:)
37(89:)@A7(89:)

 (5) 

This is a great metric for cases when the cost of FPs 
is high, such as in service scaling where FPs resulting in 
the over-provisioning of resources generate higher 
operational costs [9]. Recall is given by the ratio 
between TPs and the total number of positive test 
samples (i.e., TP plus the false negative (FN) 
predictions) [16]. 

 𝑅𝑒𝑐𝑎𝑙𝑙(𝑦 = 𝑐) = 37(89:)
37(89:)@A&(89:)

 (6) 

In contrast to Precision, this is a good metric for cases 
when the cost of FNs is high, such as in service scaling 
where FNs resulting in the under-provisioning of 
resources generate (potentially severe) degradations to 
the quality of service (QoS). Finally, the F1-score is the 
weighted average of the last two performance metrics, 
which is given by 

 𝐹1-𝑠𝑐𝑜𝑟𝑒(𝑦 = 𝑐) = (	×	7B=:C>C0D(89:)	×	E=:1**(89:)
7B=:C>C0D(89:)	@	E=:1**(89:)

   (7) 

 
Fig. 4. Training and validation results. 
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Fig. 6. Confusion matrix of the threshold-based model in terms 

of: (a) the number of samples, and (b) percentage.  
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Fig. 5. Confusion matrix of the ANN-based model in terms of: (a) 

the number of samples, and (b) percentage.  
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Figs. 5(a) and 6(a) indicate the samples giving the 
number of TPs, FPs and FNs for class 0.  

Table I shows the classification report of the ANN-
based model for the independent test set, indicating the 
values for the Overall Accuracy and the per-class 
Precision, Recall and F1-score. It can be observed that 
the values of all the performance metrics are high; class 
2 obtained the lowest performance (though still at 
around 88%~97%) due to the small number of samples 
available in both training and testing. Finally, it is worth 
mentioning that the overall accuracy of the threshold-
based model is equal to 0.923; therefore, the ANN 
model’s one is ~5% higher. 

Finally, recalling again Figs. 5(a) and 6(a), the 
threshold-based classifier has a significant lower 
classification accuracy (by ~9%) in the 0 class, which 
corresponds to the scaleIN action. Therefore, by using 
the ANN-based classifier, one can avoid over-
provisioning, which consists of the allocation of 
unneeded resources. This can be further observed in Fig. 
7, which shows the plots of the allocated vCPUs in time 
for 254 test samples taken randomly from a uniform 
distribution among the test set. In Fig. 7, three plots are 
shown; they represent respectively the allocated vCPUs 
for the ideal, the threshold-based and the ANN-based 
case. Regarding the DL model, it can be observed that 
initially the allocated vCPUs are higher than in the other 
two cases; this is due to the resources devoted to the 
ANN classifier, which are added to those needed by the 
SMF instances. On the contrary, in the threshold-based 
model the added resources to classify the samples were 
not considered, since it requires a negligible 
computational effort. The actuation time is not 
considered since it is the same in both models (ANN- 
and threshold-based). Furthermore, in the ANN-based 
plot the delay due to the sample classification is 
considered; however, it cannot be noticed from the 
figure, since the delay is equal to 0.132 milliseconds, 
which is a lot smaller compared to the interval between 
samples (1 second). The ideal plot represents the number 
of allocated vCPUs in the case in which the 
classification resources are negligible and in which the 
samples are always classified correctly. Comparing the 
three plots, it can be observed that the ANN-based 
model allows to save a significant amount of resources 
(20 vCPUs maximum in this example) compared to the 
threshold-based one and that it closely follows the ideal 
plot except for some classification errors. 

VII. CONCLUSIONS AND FUTURE WORK 
This paper has proposed a DL model, which exploits 

deep ANNs, to drive the dynamic and automated scaling 
of 5G applications and network services. Our main 
contribution is the novel composition of the dataset. 
Thanks to the usage of both standard black-box 
(execution environment) and white-box (standard 5G 
APIs) KPIs, the proposed model is independent of 
specific 5G NF implementations. Results have been 
obtained by applying the proposed model on an SMF 
and have shown that the training and validation phases 
reach an accuracy of 97~98%, with the deployed model 
going above 95% for most numbers of available 
samples, proving higher overall accuracy by ~5%, and 
computational resource savings with respect to a 
threshold-based one. 

In future works we plan to, on the one hand, compare 
this model to other ML models (e.g., other types of 
ANNs) and, on the other hand, use a real dataset. 

Moreover, this work can be further extended by 
turning it into a proactive scaling mechanism. This can 
be achieved by the introduction of traffic forecasting 
(e.g., regression) techniques, through which it would be 
able to anticipate the traffic needs. The benefit of a 
proactive scaling mechanism lies in the reduction of the 
time between the need for scaling and the actual action. 
Another possible extension of this work consists of 
adding a new black-box KPI: the power consumption of 
the machine hosting the NF. This addition would 
contribute to fostering greener 5G technologies. 
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