

Machine-Learning-Based 5G Network Function
Scaling via Black- and White-Box KPIs

Raffaele Bolla
DITEN – University of Genoa

CNIT – S2N National Lab
Genoa, Italy

raffaele.bolla@unige.it

Chiara Lombardo
CNIT – S2N National Lab

Genoa, Italy
chiara@tnt-lab.unige.it

Roberto Bruschi
DITEN – University of Genoa

CNIT – S2N National Lab
Genoa, Italy

roberto.bruschi@unige.it

Jane Frances Pajo
Telenor Research
Fornebu, Norway

jane-frances.pajo@telenor.com

Franco Davoli
DITEN – University of Genoa

CNIT – S2N National Lab
Genoa, Italy

franco.davoli@unige.it

Beatrice Siccardi
DITEN – University of Genoa

Genoa, Italy
beatrice.siccardi@tnt-lab.unige.it

Abstract— The diffusion of the Fifth-Generation (5G) of
mobile radio networks will be the main driver in the digital
transformation towards a new hyper-connected society. In
order to satisfy the stringent demands of 5G-ready applications
over the limited resources available at the edge, scaling
mechanisms become crucial to guarantee the performance levels
envisaged for 5G. Such mechanisms must be able to
automatically perform according to the real-time user demands,
the availability of computing resources and the state of Network
Functions (NFs) and applications. In this context, this paper
proposes a deep learning model, based on Artificial Neural
Networks (ANNs), for the dynamic and automated
orchestration of NFs. The novelty of this model is its
independence from specific 5G NF implementations; this is due
to the nature of the Key Performance Indicators (KPIs) used in
this work, which are related to both execution environment
(standard “black-box” KPIs) and standard 5G APIs (“white-
box” KPIs). Results obtained on the orchestration of a Session
Management Function (SMF) reach an accuracy of 97~98% for
the training and validation phases and above 95% for the
deployed model, as well as higher overall accuracy by ~5% and
computational resource savings with respect to a threshold-
based scheme.

Keywords—5G, Network Management, Machine Learning,
SMF.

I. INTRODUCTION
The Fifth-Generation (5G) of mobile radio networks

and edge computing technologies is expected to
constitute the second wave of the Data Revolution [1]
and to play a key role in the digital transformation
towards a new hyper-connected society. In order to
satisfy the stringent demand of 5G-ready applications,
and to fully exploit the available network and computing
resources, the distribution of application components
and Network Functions (NFs) from the cloud to the edge
of the network will become common practice.

Differently from cloud ones, edge computing
facilities usually offer limited computing resources on
highly heterogeneous hardware. In order to manage such
resources as efficiently as possible, scaling mechanisms
become crucial to guarantee the performance levels
envisaged for 5G (and beyond) applications. However,
the proper design of such mechanisms is definitely a
non-trivial task: along with the already mentioned

limitations of edge datacenters, the lifecycle
management of network services and applications is
performed on geographically distributed facilities, it
must be fully automated and requires the injection and
update of applications/services (or parts of them) at run-
time, only when, where and for the time needed by 5G
end-users and connected things. Moreover, the link
between the Key Performance Indicators (KPIs)
characterizing NFs/application components and CPUs is
not straightforward, so that often one of the two
categories is neglected. Nevertheless, their joint
utilization would allow for a deeper understanding of the
dynamics and efficiency of NFs/applications internal
processes, and their dependency on the underlying
hardware.

Nowadays, such mechanisms heavily rely on
Artificial Intelligence (AI) and Machine Learning (ML)
techniques for the autonomous, proactive, and cognitive
management of the lifecycle of 5G applications and
network functions. Most works in the state of the art on
scaling decisions propose threshold-based solutions.
Such thresholds can either be static (as in [2] and [3]) or
dynamic (as in [4]). Static threshold solutions may lead
to an oscillating pattern if the load frequently fluctuates
around the thresholds. Moreover, in these solutions, few
KPIs are analyzed to trigger the scaling decision. In
particular, both [2] and [4] exploit only one metric, CPU
utilization; in [3] CPU usage, RAM usage and Quality
of Experience (QoE) are adopted. Among others,
dynamic scaling for the automation of resource re-
allocation is considered in [5], while the authors in [6]
propose a system to dynamically scale stateful NFs by
state disaggregation.

In this framework, this paper presents a Deep
Learning (DL) model, exploiting Artificial Neural
Networks (ANNs), for the dynamic and automated
scaling of NFs and applications according to the Zero-
touch network and Service Management (ZSM)
paradigm [7]. The model performs the automated
addition or removal of NF/application instances across
the geographically distributed edge network, according
to real-time demands, and is based on a multiclass

classification able to combine metrics on both the NF
instance and the computational resources hosting it. The
use of ML in this context provides two benefits: the
ability to easily consider the contribution of a large
number of KPIs and that of achieving higher levels of
accuracy, as it is not mandatory to divide the feature
space in a linear fashion.

This model, based on recent specifications coming
from the ETSI Experiential Networked Intelligence
(ENI) standard [8], is not used merely for horizontal
scaling, but it leverages on the slice-specific network
and computing resource analytics provided by the
Network Data Analytics Function (NWDAF) and the
Management Data Analytics Function (MDAF) for the
automated allocation of NF/application instances in the
zones with higher traffic density. In this work, the model
is applied to the 5G Session Management Function
(SMF), which, being in charge of the establishment,
modification and release of user sessions, can hugely
benefit from the deployment of instances in the
proximity of the User Equipment (UE).

The novelty of this work lays in the generated
dataset, which comprises a large number (with respect
to the previous works mentioned above) of data from
two different sources: the execution environment (herein
Kubernetes) and the 5G Service-based architecture
(SBA). In further detail, the KPIs are a blend of “black-
box” KPIs (e.g., CPU and memory utilization) and
“white-box” KPIs (e.g., NF metrics, such as the number
of Protocol Data Unit (PDU) sessions, etc.).
Furthermore, since the white-box KPIs are extracted
from 5G standardized interfaces (via the aforementioned
analytics) that do not depend on neither the application
nor the underlying hardware, the model proposed herein
is both application- and implementation-independent.

Results obtained on the scaling of the SMF over a
geographically distributed edge show that the DL model
training and validation phases reach an accuracy of
97~98%, with the deployed model, also going above
95% for most numbers of available samples.
Furthermore, the presented model is compared to a
threshold-based one; results show a higher overall
accuracy by ~5% and a significant saving of
computational resources for the DL model.

The remainder of the paper is organized as follows.
Section II introduces the DL model, while its
implementation for service scaling is reported in Section
III. The ML workflow is described in Section IV, with
the performance of the model training and deployment
in Sections V and VI, respectively. Finally, conclusions
are drawn in Section VII.

II. DEEP LEARNING MODEL
ANNs follow a bio-inspired approach by learning by

example; as such, they have been gaining particular
interest in modelling real-world systems, especially in
the presence of noise and nonlinearity. There are two
main approaches for ANN-based predictive modelling:
(i) Classification, which predicts a category, and (ii)

Regression, which predicts a quantity, both in a
supervised fashion. The former approach is the one
adopted in this work, while the latter, which allows
introducing traffic forecasting to anticipate the traffic
needs, is currently under consideration for an extension
of this paper, with the goal of realizing a proactive
scaling mechanism allowing for the reduction of the
time between the need for scaling and the actual action.
Both approaches aim at learning the function that best
maps the input variables to the output variables (either
as a category or as a quantity) through nonlinear
approximations.

In this section, we outline the classification problem
in the context of horizontal service scaling that will be
used as basis for the ZSM solution’s DL model. In more
detail, a model is built based on a training dataset (i.e.,
historical data), which is generally organized into a table
of N rows (i.e., samples) and M+T columns (i.e., M
features/input variables and T target/output variables);
note that in the current example T=1. The number of
features defines the number of neurons in the input layer.
For a classification problem, the number of neurons in
the output layer is defined by the number of
classes/labels C (for instance, there are three classes in
the sample problem – ScaleIN, Maintain and ScaleOUT
– hence, C=3); for a regression problem, the number of
neurons is determined by the number of targets (T).
Between these two layers, there can be one or more
hidden layer(s) with a variable number of neurons. In
DL applications, the deeper the ANN becomes, the more
complex problems it will be able to solve, but also with
increased computational complexity. Regarding the
anatomy of a neuron, the inputs are used to obtain a
biased, weighted sum that is then fed to the activation
function to produce the output. Some of the most
commonly used activation functions include the
rectified linear unit, sigmoid, softmax and hyperbolic
tangent. Further details are provided in Section III. The
optimal ANN structure (i.e., the number of hidden
layers, neurons per layer and their corresponding
activation functions) highly depends on the application
and the dataset. This decision is usually based on
experience, search strategies [9], Genetic Algorithms
[10], k-fold cross validation [11], etc.

The model used in this paper is a feed-forward back-
propagation ANN. It was chosen because of its
straightforward implementation through Keras and
Tensorflow and its simplicity. As a matter of fact, since
the goal is classification, we do not need to use the more
complicated feed-back ANNs (e.g., Recurrent NNs)
which are more appropriate when doing regression. This
simplicity should reflect on the training time which may
be a sensitive variable for 5G applications with the most
stringent requirements. Therefore, in future works, when
comparing different ML models, great consideration
will be devoted to the training time. The feed-forward
back-propagation ANN is trained by iteratively updating
the weights and biases to minimize the error between the
predicted and expected target values in the dataset.
Starting with a random initialization, predictions are

calculated by feeding the data forward through the
network. Then, computed according to a specific loss
function (e.g., cross-entropy, mean absolute error, mean
squared error, among others), the error is propagated
backwards. The weights and biases are updated
according to the chosen optimizer and learning rate. This
forward-backward propagation process is repeated until
the loss function converges or a specified maximum
number of iterations is reached.

Open-source tools (such as scikit-learn [12],
TensorFlow [13], Keras [14] and PyTorch [15]) are
already widely available for building DL models in
Python. In this work, recent versions of TensorFlow
(which already has a tight integration with Keras) will
be considered to jointly benefit from the high-level APIs
of Keras and the low-level control of TensorFlow.

III. SERVICE SCALING WITH DEEP LEARNING
The proposed model exploits deep ANNs for the

zero-touch orchestration of a NF/application instance
and is meant to be introduced in ETSI ENI-compliant
network platforms and fed by the metrics and analytics
from the NWDAF and MDAF. The outcome is the
automated addition or removal of the instances across
the geographically distributed edge network according
to the real-time demands. In particular, the scaling
problem is modelled as a Multiclass Classification
problem that seeks to categorize various high-/low-level
metric combinations into “superstates” relating to
scaling decisions.

Let X be the set of (potentially) relevant high-/low-
level metrics, and Y be the scaling decision. The goal is
to find the function f that best maps X to Y, based on a
training dataset that consists of historical (X, Y)
combinations. In a multiclass classification problem, Y
refers to the label that corresponds to the “superstates”
that categorize the metric combinations into classes of
scaling decisions, such as whether to scale in, maintain
or scale out for a given sample of X.

Given a training dataset, a ML classification
algorithm seeks to divide the input space into decision
regions corresponding to the C discrete classes, and
builds a model by creating decision boundaries between
these regions based on the statistical patterns in the
dataset [16] [17]. It is important to note that the classes
of a given dataset may not always be exactly separable;
hence, the goal of the algorithm is to find the model f
that optimizes the cost function (such as maximizing
accuracy or minimizing loss, among others).

Suppose that the random variables X and Y evolve
over time depending on the service demands, and each
combined realization or sample (𝒙("), 𝑦(")) in the
training dataset is indexed in temporal succession, 𝑡 =
0, 1, … . In a probabilistic view of multiclass
classification, the model f and its parameters are found
by maximizing the likelihood function
ℒ({𝑃.𝑦(")/𝒙(")0, 𝑡 = 0, 1, … }) or, equivalently,
minimizing the loss function, 𝐸 = −log	(ℒ) during the

training phase, such that f best captures the statistical
patterns between the samples [16] [9]; further details
regarding the model we adopted can be found in Section
V. Once a model has been built, it can then be used to
automatically classify unlabeled samples of X, for
instance, with an independent test dataset or in an actual
production environment. During these phases, the model
computes the posterior probabilities for each class,
{𝑃(𝑦 = 𝑐|𝒙), 𝑐 = 1,… , 𝐶} , given the unlabeled input
data, and the class corresponding to the highest
𝑃(𝑦 = 𝑐∗|𝒙) indicates the predicted label for each
sample.

An ANN-based classifier is considered in this work
to capture the statistical patterns between X and Y, in a
supervised learning approach. This choice is mainly
motivated by the ANN’s ability in modelling real-world
systems, especially in the presence of noise and
nonlinearity. As described in [17], an ANN-based model
is a “nested” mathematical function 𝑓%&& such that for
an L-layer network:

 𝑌 = 𝑓%&&(𝑿) = 𝑓'(⋯𝑓((𝑓)(𝑿))) (1)

where cases with 𝐿 > 2 (or with more than one hidden
layer between the input and output layers) are
considered as deep ANNs. Generally, for layer 𝑙 =
{1,… , 𝐿},

 𝑦* = 𝑓*(𝒛) = 𝑔*(𝑾*𝒛 + 𝒃*) (2)

where 𝒛 is the output of the preceding layer, 𝑔* is the
activation function, 𝐖* is the weight matrix and 𝐛* is the
bias vector. The rows in the matrix 𝐖* are vectors
{𝒘*,,! , 𝑚* = 1,…	,𝑀*} , each with the same
dimensionality as 𝒛, where 𝑀* is the number of neurons
in layer 𝑙. It can be noted how the output layer generates
a probability distribution {𝑃(𝑦 = 𝑐|𝒙), 𝑐 = 1,… , 𝐶} ,
based on which the predicted label 𝑦M can be obtained as
the one corresponding to the highest 𝑃(𝑦 = 𝑐∗|𝒙) value.

Most of the model parameters shown above are not
solely learned from the training samples, but also from
the outputs of the preceding layers, especially in Deep
Learning applications [17]. In this view, a feed-forward
backpropagation ANN starts with a random
initialization of the model parameters and calculates the
predictions (e.g., with a Maximum Likelihood criterion)
by feeding the data forward through the network; it then
computes the error according to a specific loss function
(e.g., cross-entropy or negative log likelihood) and
propagates it backwards to update the weights and
biases. As pointed out in [16], the learning process
involves solving a nonlinear optimization problem and
evaluating the derivatives of the loss function with
respect to the model parameters; backpropagation is a
technique for efficiently evaluating the gradient of the
loss function for training feed-forward networks.

The most popular choices of activation functions in
recent works are the rectified linear unit (ReLU) and the
Softmax functions. ReLU is typically used in the hidden

layers, while the activation function used in the output
layer highly depends on the application – for instance,
for a multiclass classification problem, Softmax is
typically used [17] [9]. As previously anticipated,
training an ANN entails solving an optimization
problem – that is, minimizing the loss function. This can
be performed through a variety of optimization
algorithms, or the so-called “optimizers”. In this work,
we use the Adaptive Moment Estimation (Adam) [18].

IV. MACHINE LEARNING WORKFLOW APPLIED TO THE
5G ENVIRONMENT

This section describes how the service scaling model
introduced in Section III is applied to the 5G context,
along with the setup that was used for the training and
testing trials reported in Sections V and VI. ML
workflows usually start with Data Collection from one
or more data sources, carefully selected according to
their potential relevance to the problem at hand. Since
the acquired (raw) data may have different formats,
especially if they come from several sources, the raw
data need to undergo Pre-processing, in which they are
cleaned and formatted into a usable dataset, suitably
structured for the problem; feature analysis, label/target
definition and splitting of the dataset (into training and
test sets) are also done in this phase. Once the structured
dataset is ready, then comes the Modelling phase –
where the training set is fed to the algorithm to learn the
model parameters; in some cases, a validation set can be
used to further refine (e.g., fine-tuning of parameters)
the model. In the Deployment phase, the resulting model
is tested with an independent test set, and/or in a
production environment.

A. Data Collection
In this work, we consider the presence of a

Prometheus database [19] which maintains the time
series that the NWDAF and the MDAF can obtain from
the SMF on the connection and mobility management
tasks and on the NF usage statistics, respectively. The
testbench used to generate the dataset and validate the
model is shown in Fig. 1. In particular, for mimicking
the presence of a 5G network, from the access (including
the data generated by the users) to the core, we use
UERANSIM [20] and Free5GC [21], respectively. The

former is a Linux-based emulator of a complete 5G
access network, including UEs and gNodeBs, while the
latter provides a complete 5G core with the individual
NFs provided in a containerized fashion, including our
targeted SMF. Both tools are open source; UERANSIM
is deployed through multiple Virtual Machines (VMs)
and Free5GC relies on Kubernetes [22]. In each test, the
number of UEs is randomly selected between 0 and 100
and gNodeBs vary between 1 and 3, resulting in varying
system workloads. Furthermore, the 5G core network is
container-based and runs on top of a Kubernetes cluster.
Each SMF instance has resources limited to one virtual
CPU (vCPU) and 512 MB of random-access memory
(RAM). This configuration has been chosen to reach the
maximum capacity of an SMF in the tests, and hence,
the system will need to scale out or add another SMF
instance.

The tests have been performed in an offline
environment, such that each test has a corresponding
Prometheus export which contains both the white-box
and the black-box KPIs. In order to retrieve the former
and passing them to Prometheus, since the current
support of the REST APIs for events subscription in
Free5GC NFs is incomplete, we extended the NWDAF
to access the SMF logs (via the Loki framework). The
latter are exported from Kubernetes to the Prometheus
database through cAdvisor [23] which provides data
regarding resource usage and performance
characteristics on a container basis. The KPIs are
exported to Prometheus every 1 second. The Prometheus
data generated for the aforementioned tests are parsed to
obtain the necessary features and data samples, then
aggregated according to the desired structure. As
previously mentioned, in order to generate a usable
dataset, the data need to be carefully aggregated with
consistent timeframes, and then, suitably structured for
the problem at hand.

B. Pre-Processing
By looking at the (created, responded, closed)

timestamps exported from Prometheus, 8 white-box
KPIs can be derived per second: number of initiated and
released Protocol Data Unit (PDU) sessions, number of
allocated QoS Flow Identifiers (QFIs), user plane path
changes, N10 and N11 terminations, tracking areas and
Non-Access Stratum (NAS) interactions. From the data
exported by cAdvisor, 6 black-box KPIs from the CPU
utilization (user, system, total) and from the memory
utilization (rss, working_set, total) are considered. The
black-box metrics are further processed to obtain the
average, min and max values per second across all active
SMF instances, which results in a total of 32 features.

Data cleaning usually involves handling missing
and/or invariant data. For instance, in the case of missing
data, the distribution of the missing values can be
initially checked; if there are only few missing values,
one can either drop the samples or use the average value
of the samples; otherwise, drop the columns with many
missing values. After cleaning, the number of input
features to be used in the actual training/testing is

Fig. 1. Testbench used to generate the dataset.

reduced from 32 to 24 features. Given the structured
(and cleaned) dataset, it can now be split into training
and test sets; the former can also be further split for the
actual training and the intermediate validation. In this
work, the training set comprises 60% of the samples
(20% of which was reserved for the validation in the
model fitting), and the remaining 40% was used in the
final testing.

Let us recall that the three classes – ScaleIN,
Maintain and ScaleOUT – act as “superstates”
classifying the metric combinations towards the decision
of whether to scale in, maintain or scale out the SMF
instances. The input features in the dataset characterize
the historical metric combinations, while the
corresponding labels characterize the scaling decisions,
where the latter is usually based on technical expertise.

Since the initial dataset is not labelled, we suppose
that the historical scaling decisions are governed by
some conditions based on the CPU utilization and the
number of active instances, and generate the labels
accordingly. However, it is important to note that in real-
world ML/AI applications such conditions are supposed
to be unknown to the developer, and learned by the
model, on the basis of the given features and labels of
the dataset. The sole purpose of the following conditions
is to generate a working dataset.

In more detail, 1-minute moving averages of the CPU
utilization (=%total) of each SMF instance are obtained
and the mean across all active instances is considered:

 𝑀𝑜𝑣𝐴𝑣𝑔_𝐶𝑃𝑈_𝑢𝑡𝚤𝑙UUUUUUUUUUUUUUUUUUUUUUUU(") =
∑ ∑ .%"0"1*	#

(%)2'(%)
#()

*
%(*+,+)

3	×	6(*)
 (3)

where 𝑇 = 60 (seconds) and 𝑉(") is the value of
#SMFs_active at time instant 𝑡. Based on the runtime
values of 𝑀𝑜𝑣𝐴𝑣𝑔_𝐶𝑃𝑈_𝑢𝑡𝚤𝑙UUUUUUUUUUUUUUUUUUUUUUUU(") , the supposed
conditions are shown in Fig. 2.

To better illustrate the service scaling scenario, Fig.
3 shows how 𝑀𝑜𝑣𝐴𝑣𝑔_𝐶𝑃𝑈_𝑢𝑡𝚤𝑙UUUUUUUUUUUUUUUUUUUUUUUU and #SMFs_active
vary with time, as well as the desired scaling decision at
each instant. It can also be observed that the notifications
for the need of scaling in/out SMF instances continue
until the service orchestrator actuates the desired
decision.

Finally, it is worth noticing that the dataset we
generated is purely synthetic. Nevertheless, we reiterate
once again that our contribution lays in the composition

of said dataset and not its real values. In the future we
hope to test the model presented herein on real data.

V. MODEL TRAINING AND VALIDATION
In this work, the widely used TensorFlow-Keras

bundle is adopted for building the ANN-based model.
With Keras, ANNs can be constructed in a modular and
fully configurable way using its built-in classes for
various components (such as the layers, loss functions,
activation functions and optimizers, among others). It
also features automatic backpropagation that simplifies
the training process for the users.

A Sequential model [24] is considered for the multi-
class classification problem at hand, and it is built by
basically stacking ANN layers, each with exactly one
input and output tensor (i.e., multi-dimensional array).
Dense layers [25] are used in the model – particularly, 2
fully-connected hidden layers with 24 neurons/layer
(i.e., set to equal the number of input features,
dataset.shape[1]–1) and ReLU activation functions,
then 1 fully-connected output layer with 3 neurons (i.e.,
set to equal the number of classes) and SoftMax
activation functions. Adam is chosen as optimizer, with
a learning rate η of 0.01, and default exponential decay
rates (i.e., β1 = 0.9 and β2 = 0.999) [18]. Lastly, sparse
categorical crossentropy and sparse categorical
accuracy are used as loss function and metric,
respectively, since the labels are not one-hot encoded
and kept their integer values {0, 1, 2} (i.e., as on the right
in Fig. 3).

Now, recalling the anatomy of the neuron, with a
dense layer (fully connected), the number of inputs
received by each neuron is equal to the number of
neurons in the preceding layer, and its output is therefore
also received by all neurons in the succeeding layer.
Moreover, each neuron has one bias parameter. With
this in mind, each hidden layer in the model constructed
above has a total of 600 (=24 * 24 + 24) trainable
parameters, while the output layer has 75 (=3 * 24 + 3).
All in all, the model has 1275 trainable parameters. The
training set used as input to the model has 4129 (60% of
the total) samples – 80% of which are used for actual
training, while the remaining 20% is used for validation.
Fig. 4 shows the training and validation accuracies
obtained in 100 epochs. It can be observed that the

Fig. 2. Example of service scaling conditions.
Fig. 2. Example of service scaling conditions.

ScaleIN

Maintain

ScaleOUT

Fig. 3. Example of service scaling decisions based on CPU

utilization and number of active instances.

0

1

2

0

20

40

60

80

100

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

MovAvg_CPU_util #SMFs_active Decision

[ScaleOUT]

[Maintain]

[ScaleIN]

model has stable accuracies at around 97~98%. It is also
interesting to note that with 3 hidden layers, such
accuracies start to decrease with increasing epochs,
owing to overfitting. Finally, it is worth mentioning that
the model was trained on a VM with 4 vCPUs and 8 GB
of RAM; with this configuration the training phase
lasted 30.48 seconds.

VI. MODEL TESTING AND DEPLOYMENT
This phase comprised the testing of two models: a

threshold-based model and the ANN model thoroughly
explained in this text. The former is a static threshold
model that is based on the one presented in [3]. In
particular, thresholds are applied to both the black-box
and the white-box KPIs; eventually the result is decided
by an OR operator between the two sets. In both cases,
2753 samples (40% of the total) were used in this phase;
these samples were never-before-seen samples, in order
to reflect an actual production environment. One way of
showing the performance of a classification model is
through a confusion matrix [17], which summarizes the
success of predicting the classes of the test samples, with
one axis indicating the true label and the other the
predicted label. Figs. 5 and 6 show the confusion
matrices obtained with the two aforementioned models.
In both cases we can observe the confusion matrices in
terms of both the number of samples (Figs. 5(a) and 6(a))
and the percentages (Figs. 5(b) and 6(b)). By comparing
the results shown in Figs. 5(b) and 6(b), it can be
observed that the ANN-based classifier has a higher
accuracy than the threshold-based one; in particular, the
former was able to correctly classify {99.62%, 95.29%,
97.06%} of the samples belonging to the classes {0, 1,
2}, respectively.

It can also be noted in Figs. 5(a) and 6(a) that the
sample set belonging to class 2 is substantially small
(~10%) compared to the other two classes; hence, the
dataset is class imbalanced. This can provide indications
on which performance metrics to look at.

Starting from the confusion matrix, different
performance metrics can be derived – namely, the
Overall Accuracy, Precision, Recall and F1-score. The
Overall Accuracy is given by the ratio of the number of
correctly classified samples to the total number of
samples.

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∑ 37(89:)-
#	0<	"=>"	>1,?*=>

 (4)

While this is a great metric for symmetric datasets, it
is not the proper measure for class imbalanced datasets.
In such cases, the other three metrics are usually
adopted. Precision is given by the ratio between the
number of true positive (TP) predictions and the total
number of positive predictions (i.e., TP) plus the false
positive (FP) predictions.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑦 = 𝑐) = 37(89:)
37(89:)@A7(89:)

 (5)

This is a great metric for cases when the cost of FPs
is high, such as in service scaling where FPs resulting in
the over-provisioning of resources generate higher
operational costs [9]. Recall is given by the ratio
between TPs and the total number of positive test
samples (i.e., TP plus the false negative (FN)
predictions) [16].

 𝑅𝑒𝑐𝑎𝑙𝑙(𝑦 = 𝑐) = 37(89:)
37(89:)@A&(89:)

 (6)

In contrast to Precision, this is a good metric for cases
when the cost of FNs is high, such as in service scaling
where FNs resulting in the under-provisioning of
resources generate (potentially severe) degradations to
the quality of service (QoS). Finally, the F1-score is the
weighted average of the last two performance metrics,
which is given by

 𝐹1-𝑠𝑐𝑜𝑟𝑒(𝑦 = 𝑐) = (×	7B=:C>C0D(89:)	×	E=:1**(89:)
7B=:C>C0D(89:)	@	E=:1**(89:)

 (7)

Fig. 4. Training and validation results.

Training
Validation

Sp
ar

se
 c

at
eg

or
ic

al
 a

cc
ur

ac
y

Fig. 6. Confusion matrix of the threshold-based model in terms

of: (a) the number of samples, and (b) percentage.

(a) (b)

Fig. 5. Confusion matrix of the ANN-based model in terms of: (a)

the number of samples, and (b) percentage.

(b)(a)

Figs. 5(a) and 6(a) indicate the samples giving the
number of TPs, FPs and FNs for class 0.

Table I shows the classification report of the ANN-
based model for the independent test set, indicating the
values for the Overall Accuracy and the per-class
Precision, Recall and F1-score. It can be observed that
the values of all the performance metrics are high; class
2 obtained the lowest performance (though still at
around 88%~97%) due to the small number of samples
available in both training and testing. Finally, it is worth
mentioning that the overall accuracy of the threshold-
based model is equal to 0.923; therefore, the ANN
model’s one is ~5% higher.

Finally, recalling again Figs. 5(a) and 6(a), the
threshold-based classifier has a significant lower
classification accuracy (by ~9%) in the 0 class, which
corresponds to the scaleIN action. Therefore, by using
the ANN-based classifier, one can avoid over-
provisioning, which consists of the allocation of
unneeded resources. This can be further observed in Fig.
7, which shows the plots of the allocated vCPUs in time
for 254 test samples taken randomly from a uniform
distribution among the test set. In Fig. 7, three plots are
shown; they represent respectively the allocated vCPUs
for the ideal, the threshold-based and the ANN-based
case. Regarding the DL model, it can be observed that
initially the allocated vCPUs are higher than in the other
two cases; this is due to the resources devoted to the
ANN classifier, which are added to those needed by the
SMF instances. On the contrary, in the threshold-based
model the added resources to classify the samples were
not considered, since it requires a negligible
computational effort. The actuation time is not
considered since it is the same in both models (ANN-
and threshold-based). Furthermore, in the ANN-based
plot the delay due to the sample classification is
considered; however, it cannot be noticed from the
figure, since the delay is equal to 0.132 milliseconds,
which is a lot smaller compared to the interval between
samples (1 second). The ideal plot represents the number
of allocated vCPUs in the case in which the
classification resources are negligible and in which the
samples are always classified correctly. Comparing the
three plots, it can be observed that the ANN-based
model allows to save a significant amount of resources
(20 vCPUs maximum in this example) compared to the
threshold-based one and that it closely follows the ideal
plot except for some classification errors.

VII. CONCLUSIONS AND FUTURE WORK
This paper has proposed a DL model, which exploits

deep ANNs, to drive the dynamic and automated scaling
of 5G applications and network services. Our main
contribution is the novel composition of the dataset.
Thanks to the usage of both standard black-box
(execution environment) and white-box (standard 5G
APIs) KPIs, the proposed model is independent of
specific 5G NF implementations. Results have been
obtained by applying the proposed model on an SMF
and have shown that the training and validation phases
reach an accuracy of 97~98%, with the deployed model
going above 95% for most numbers of available
samples, proving higher overall accuracy by ~5%, and
computational resource savings with respect to a
threshold-based one.

In future works we plan to, on the one hand, compare
this model to other ML models (e.g., other types of
ANNs) and, on the other hand, use a real dataset.

Moreover, this work can be further extended by
turning it into a proactive scaling mechanism. This can
be achieved by the introduction of traffic forecasting
(e.g., regression) techniques, through which it would be
able to anticipate the traffic needs. The benefit of a
proactive scaling mechanism lies in the reduction of the
time between the need for scaling and the actual action.
Another possible extension of this work consists of
adding a new black-box KPI: the power consumption of
the machine hosting the NF. This addition would
contribute to fostering greener 5G technologies.

ACKNOWLEDGMENT
This work has been supported by the Horizon 2020

5G-PPP Innovation Action 5G-INDUCE (Grant
Agreement no. 101016941).

REFERENCES
[1] S. Mian, “Investing in the Coming Data Revolution,” NASDAQ News,

Nov. 2019, https://www.nasdaq.com/articles/investing-in-the-coming-
data-revolution-2019-11-06.

[2] G. A. Carella, M. Pauls, L. Grebe and T. Magedanz, “An Extensible
Autoscaling Engine (AE) for Software-based Network Functions,”
2016 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), 2016, Palo Alto, CA, Nov.
2016, pp. 219-225, doi: 10.1109/NFV-SDN.2016.7919501.

[3] S. Dutta, T. Taleb and A. Ksentini, “QoE-aware Elasticity Support in
Cloud-Native 5G Systems,” 2016 IEEE International Conference on

Fig. 7 Number of allocated vCPUs in time for 254 test samples

taken randomly from the test set for three cases.

0

20

40

60

80

100

120

140

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

vC
PU
s

Time [s]

Ideal ANN-based Threshold-based
TABLE I. CLASSIFICATION REPORT OF THE ANN MODEL

Class Precision Recall F1–
score

Samples

0 (ScaleIN) 0.967 0.996 0.981 1302

1 (Maintain) 0.992 0.953 0.972 1315

2 (ScaleOUT) 0.880 0.971 0.923 136

Overall accuracy: 0.974 2753

Communications (ICC), Kuala Lumpur, Malaysia, May 2016, pp. 1-6,
doi: 10.1109/ICC.2016.7511377.

[4] A. Beloglazov and R. Buyya, “Adaptive Threshold-Based Approach
for Energy-Efficient Consolidation of Virtual Machines in Cloud Data
Centers,” Proc. 8th International Workshop on Middleware for Grids,
Clouds and e-Science 2010 (MGC '10), Bangalore, India, Nov. 2010.
Association for Computing Machinery, New York, NY, USA, Article
4, 1–6. https://doi.org/10.1145/1890799.1890803.

[5] W. Rankothge, E. Ramalhinho and J. Lobo, “On the Scaling of
Virtualized Network Functions,” Proc. 2019 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), Arlington, VA,
April 2019.

[6] F. B. Carvalho, R. A. Ferreira, Í. Cunha, M. A. M. Vieira and M. K.
Ramanathan, “Dyssect: Dynamic Scaling of Stateful Network
Functions,” Proc. IEEE INFOCOM 2022, London, UK, May 2022.

[7] Zero touch network and Service Management (ZSM), ETSI ISG,
https://www.etsi.org/technologies/zero-touch-network-
servicemanagement.

[8] ETSI Experiential Networked Intelligence (ENI) home page at
https://www.etsi.org/committee/eni?tmpl=component.

[9] T. Subramanya and R. Riggio, “Machine Learning-Driven Scaling and
Placement of Virtual Network Functions at the Network Edges,” in
Proc. 2019 IEEE Conference on Network Softwarization (NetSoft),
Paris, France, June 2019, pp. 414-422.

[10] G. Kousiouris et al., “Parametric Design and Performance Analysis of
a Decoupled Service-Oriented Prediction Framework Based on

Embedded Numerical Software,” IEEE Transactions on Services
Computing, vol. 6, no. 4, pp. 511-524, Oct.-Dec. 2013.

[11] X. Zhang, T. Xue and H. Eugene Stanley, “Comparison of Econometric
Models and Artificial Neural Networks Algorithms for the Prediction
of Baltic Dry Index,” IEEE Access, vol. 7, pp. 1647-1657, 2019.

[12] “Scikit-learn.” URL: https://scikit-learn.org/.
[13] “TensorFlow.” URL: https://www.tensorflow.org/.
[14] “Keras.” URL: https://keras.io/.
[15] “PyTorch.” URL: https://pytorch.org/.
[16] C. M. Bishop, “Pattern Recognition and Machine Learning,” Springer

Science+Business Media, LLC, New York, NY, 2006.
[17] A. Burkov, “The Hundred-Page Machine Learning Book,” Andriy

Burkov, 2019.
[18] “Optimizer that implements the Adam algorithm,” URL:

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Ada
m.

[19] “Prometheus”, URL: https://prometheus.io/.
[20] “UERANSIM”, URL: https://github.com/aligungr/UERANSIM
[21] “Free5GC”, URL: https://www.free5gc.org/
[22] “Kubernetes”, URL: https://kubernetes.io/.
[23] “cAdvisor”, URL: https://github.com/google/cadvisor.
[24] “The Sequential model,” URL:

https://www.tensorflow.org/guide/keras/sequential_model.
[25] “Densely-connected NN layers,” URL:

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense.

