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Abstract— We consider multiple bursty flows characterized by 

different statistical parameters and performance requirements, 

which generate packets that require some form of processing at 

the network edge. We model the processing resources as multiple 

servers that can be activated/deactivated on a longer time scale 

with respect to the packet dynamics. Packets awaiting service are 

queued in an infinite buffer, and the queueing model adopted is of 

the MX/D/C type; the flow dynamics is instead represented by a 

birth-death model on a much longer time scale. By exploiting a 

time-scale decomposition, we describe possible Call Admission 

Control (CAC) strategies that are based on a Stochastic Knapsack 

model over the space of flows that satisfy packet-level delay 

constraints. We compare a Complete Partitioning and a Complete 

Sharing CAC scheme in terms of energy efficient implementation. 

Keywords— Energy Efficient Networking, Adaptive Rate, 

MEC, Load Balancing, Energy-Performance Tradeoff. 

I. INTRODUCTION 

Following a period of increased interest at the beginning of 
the century, the issue of energy efficiency in networking – 
particularly in the fixed network portions of access, transport 
and core, and in networking devices, spawned by some 
pioneering works on various aspects of management and 
analysis ([1]-[6] among others; see also [7] and [8] for survey 
papers on that period) – has seen a lesser momentum over the 
successive decade. Attention seemed to have shifted more on 
datacenters [9], [10] and the wireless segment (e.g., [11]). 
However, it is worth noting that the Key Performance Indicators 
(KPIs) regarding the fifth generation of mobile wireless 
networks (5G) did not include specific figures on energy 
efficiency, though significant reductions in energy consumption 
were expected. This lack of specification was likely due to the 
belief that the advent of network softwarization and 
virtualization technologies would increase energy efficiency per 
se, owing to consolidation of resources in the presence of low 
traffic load but actually neglecting the fact that the widespread 
use of general-purpose hardware may jeopardize energy saving, 
unless proper control strategies are put in operation [12]. 

On the other hand, the topic of network energy efficiency has 
received again increased attention in the evolution toward the 6th 
generation mobile network (6G), where very ambitious goals are 

being set also with respect to energy efficiency [13]. In the light 
of this renewed interest, it is worth focusing attention not only 
on the wireless segment, where specific technological 
innovations may suggest novel modeling and control 
approaches, but also on the access, backhaul and core network, 
and to aim to end-to-end strategies for energy efficiency that also 
include the increased presence of in-network and edge 
computational elements, as those introduced by Mobile Edge 
Computing (MEC) [14]-[16]; a recent survey on energy 
efficiency in the “telco cloud” is contained in [17]. 

In doing so, the powerful modeling and control techniques 
that were devised for “traditional” networking equipment can be 
revisited with virtualized architectures and MEC computational 
resources in mind. Dynamic flow-based models, queueing 
models suitable for parametric optimization, and machine 
learning (ML) techniques (see, e.g., [18] for ML-based control 
approaches that do not neglect the relevance of analytical 
modeling of dynamic systems) are all tools that are worth 
considering in this framework. 

In this paper, we elaborate further on the modeling and 
control scheme that we introduced in [19] for the load-adaptive 
adjustment of processing capacity to serve incoming streaming 
flows, under specific packet-level delay and flow-level blocking 
constraints. The goal of adopting the minimum amount of 
processing resources needed to satisfy performance 
requirements is pursued to indirectly obtain a reduction in 
energy consumption. Putting processing units (cores) to sleep – 
i.e., to low power states – in the presence of low workloads and 
waking them up when an increase in workload would jeopardize 
performance, is equivalent to de-activating/activating servers in 
the queueing model and may significantly reduce the power 
consumption without negatively affecting performance. Indeed, 
the relation between power consumption and the number of 
active cores in multi-core processors has been investigated, 
among others, in [20], [21], where the consumption is shown to 
be roughly proportional (or piecewise linear) with respect to the 
number of active cores at a given operating frequency. 

Herein, we rely on an M�/D/C queuing model [22] to 
represent the processing units that perform a specific network 
function on packets that are queued for service; however, we 
explicitly consider here that packets may be generated by flows 



 

that are characterized by different statistical features and 
performance requirements. Then, based on a Service Separation 
concept and on Stochastic Knapsack models [23], we devise 
admission control strategies for the flows. 

The paper is organized as follows. We define the model 
structure in Section II. Numerical results are presented and 
commented in Section III. Finally, section IV contains the 
conclusions and directions for further research. 

II.  MULTI-CLASS MULTI-SCALE TRAFFIC MODELS 

We consider streaming data flows (we will use the terms 

“stream” and “flow” interchangeably in what follows) that need 

some kind of processing (e.g., User Plane Functions (UPFs) that 

perform packet recognition and redirection) and are directed to 

multiple micro-datacenters in the edge. We assume the 

statistical distribution of flows to be given by a birth-death 

model: flows are generated by a Poisson distribution with 

parameter �� and have an exponentially distributed duration 

with parameter ��; moreover, they are subjected to an 

Admission Control, in order to avoid overloading the 

computational resources. We also assume that accepted flows 

carry batches of packets with exponentially distributed 

interarrival times and that the batch length is characterized by a 

random variable 	 with discrete long-tail distribution (Zipf) 

with mean 
 [packets/batch]; packet processing times are 

assumed to be of deterministic duration D. The latter 

assumption is approximately justified in some Use Cases (e.g., 

UPFs’ header processing and lookup table search), and 

basically shifts the random nature of processing times over 

packet batches, owing to the random length of the latter.  

We model queueing and processing at the packet level as an Mx/D/C multi-server queueing system, where C represents the 

number of active cores of our processing units. With system 

utilization less than 1, such model is known to admit a 

stationary distribution that can be determined analytically in 

closed form [22]. However, data streams may be characterized 

by different statistical parameters, in terms of average flow and 

batch generation rates. Therefore, at the flow level, we would 

be in the presence of a Generalized Stochastic Knapsack [23]. 

As suggested in [23], the most advisable and manageable 

operational procedure in this case is based on the concept of 

Service Separation; namely, packets generated by flows with 

the same statistical characteristics and performance 

requirements are multiplexed together in a separate queue and 

are assigned a certain number of specific processing units. In 

other words, flows with similar characteristics belong to a 

specific class, and computational resources are assigned on a 

per-class basis. Under Service Separation, we will focus on the 

Admission Control strategy known as Complete Partitioning 

(CP), where each class is assigned exclusively up to a maximum 

number of processing units.  

On the other hand, there is also the possibility (though with 

some limitation in generality) to handle analytically a 

Stochastic Knapsack without Service Separation, 

corresponding to mixing all traffic classes in a single queue, and 

adopting the Admission Control strategy known as Complete 

Sharing (CS). We will also consider this case and use it for 

comparison with CP in the specific situation in which all traffic 

steams are characterized by the same processing time for 

packets. 

Then, let us focus on a specific edge datacenter with the 

availability of an overall processing capacity resource pool of ��� units (e.g., maximum number of cores that can be 

activated); we consider � different stream classes and let �(�) 
be the batch generation rate, 
(�) the average batch length, and �(�) the processing time of class-k packets. Class k flows’ 

arrival rates and average durations are represented by ��(�)
 and 

1 ��(�)⁄ , respectively. 

Our goal is twofold, and it will be pursued at two different 

levels of granularity in the traffic units: namely, packet-level 

and flow-level. At the packet level, we want to find the 

minimum processing capacities ���(�) ≤ ���, � = 1, … , �, 

that are required to satisfy packet-level Quality of Service 

(QoS) requirements for each given number �(�) of active (i.e., 

accepted in the system and generating packet batches) class-k 

streams. We will express packet-level QoS requirements in 

terms of a single KPI per class, represented by an upper bound 

on the average waiting time of the class packets. The allowable 

combinations of flows of the different classes that satisfy such 

QoS requirements (“flow profiles”) determine the so-called 

“schedulable region” or “feasibility region” in the space of 

flows. Then, at the flow level, we will specify the two CS and 

CP admission control strategies. In the case of CP, the 

boundaries of the partitions will be obtained through a 

parametric optimization procedure to minimize a weighted 

average of the blocking probabilities of the flows. 

II.A. Mx/D/C Model and Average Waiting Times 

We consider the k-th processor’s queue conditional to the 

number of active class-k flows �(�). Any change in �(�) would 

produce a variation in the total offered load �(�)�(�)
(�) in 
[pkts/s], and thus a transient behaviour of the queueing system; 
however, since variations in the flow dynamics are expected to 
occur on a time scale much longer than that of batch interarrival 
times and packet service times (which determine the queue 

dynamics under a given �(�)), we can approximate the 
conditional probability distribution of the number of queued 
packets with its stationary expression, which would be reached 
under the condition that 

�(�) = �(�)�(�)
(�)�(�)
�(�) < 1                            (1) 

(we consider here the values �(�) of computational resources – 
i.e., servers in the queue – assigned to class � to have also been 
fixed). We note that a more rigorous justification of our 
stationary approximation, based on Courtois’ decomposition, 
can be found in reference [24] in a related problem involving the 
relation between guaranteed-bandwidth and best-effort traffic. 
Condition (1) imposes an upper bound on the maximum number 

of flows �(�) that can be accepted for a given �(�): 



 

�(�) < " �(�)
�(�)
(�)�(�)# − 1 ≡ ���(�)                   (2) 

where ⌈(⌉ represents the smallest integer greater than or equal to 
x. Then, following [22], the average queue length 

*+(�),�(�), �(�)- of the Mx/D/C system with �(�) ≥ 1 active 

flows and �(�) servers can be written analytically as 

*+(�),�(�), �(�)- = 1
2�(�)(1 − �(�)) /,�(�)�(�)-0 + 

−�(�),�(�) − 1- + 2 3�(�),�(�) − 1- − 4(4 − 1)567(�)
8(9):0

7;0
+ 

+ �(�)�(�) <= >	(�)0? 
(�)@ − 1AB                                             (3) 

where 	(�) represents class-k batch size and 67(�), 4 =
2, … �(�) − 2 are the probabilities of having 4 packets in the 

queueing system (the summation in the r.h.s. disappears for �(�) < 4). 

By applying Little’s Theorem, the average waiting time 

(conditional to the presence of at least 1 active flow) is 

E+(�),�(�), �(�)- = *+,�(�), �(�)-
�(�)�(�)
(�)                      (4) 

II.B. Stochastic Knapsack – Service Separation with 
Complete Partitioning (CP) 

As regards the traffic at the flow level, the Stochastic 
Knapsack model representing it is characterized by a vector 

Markov Chain F = 3F(G), F(0), … , F(H)5, where the k-th 

component is a birth-death process with traffic intensity I�(�) =
��(�) ��(�)@ . Let now �G, �0, … , �H , with ∑ �KH�;G = ���, be a 

partition of the available computational resources, and let 

���(�) ,�(�)- be a function defining the minimum amount of 

computational resources that would be necessary to maintain 
class-k packet-level constraints for each allowable value �(�) that the stationary random variable F(�) can assume: 

���(�) ,�(�)- = min>0 < �(�) ≤ ��: E+(�),�(�), �(�)- ≤
≤ EQ+(�), ?  , �
= 1, … , �                                                         (5) 

where EQ+(�)
 is a desired upper bound on the average waiting 

delay of class-k packets. 

Then, the state space of F is defined by 

S ≔ >F ∈ ℕWH: E+(�),�(�), ���(�) - ≤ EQ+(�), �(�)

= 0,1, … , �X YZ[(�) , � = 1, … , �?                  (6) 

where �X ��(�)
 is the maximum number of active class-k flows 

such that 

                               E+(�),�X��(�) , ��- ≤ EQ+(�)                         (7) 

S represents the feasibility region corresponding to a 
Complete Partitioning admission control policy in the space of 
flows within which the packet-level constraints are satisfied. At 
this point, we can still trade-off power consumption (related to 
the number of active processing units) and per-class blocking 

probabilities _̂(�)
.This can be done either by setting given upper 

bounds ^̀_(�), � = 1, … , �, or by minimizing a weighted sum of 

the per-class blocking probabilities with respect to the partition 
coefficients. We have chosen the second alternative here. Since 
the flow dynamics are described by a birth-death Markov Chain 

with traffic intensity I�(�)
 (giving rise to a M/M/���(�)

/���(�)
 

queueing system), the blocking probabilities in this case are 
provided by the Erlang B formula 

  =a3I�(�), �X ��(�) 5 = 3I�(�)5YX bcd(9) �X ��(�) !@
∑ /I�(�)B7 4!@YX bcd(9)

7;W
               (8) 

Then, we seek the partition �G, �0, … , �H , ∑ �KH�;G = ��� 
that minimizes a weighted sum of the blocking probabilities; i.e., 
we want to find 

min8g,8h,…,8i
∑ 8ji9kg ;8bcd

2 I�(�)
I

H

�;G
=a3I�(�), �X��(�) (�K)5             (9) 

having defined I = ∑ I�(�)H�;G . This optimization problem can 

be solved numerically in different ways. Since the objective 
function is separable in the optimization variables, Dynamic 
Programming can be applied, as in reference [23], p. 122; 
another possibility is to use a descent method, by exploiting the 
convexity in the number of servers of the Erlang B and of its 
analytic continuation [25], [26]. In summary, the management 
and control framework that has been introduced allows: (i) to 
maintain average delay constraints at the packet level with the 
minimum allowable energy consumption, by activating only 
(over the time scale of flow dynamics) the necessary number of 
processing units; (ii) to further trade-off performance and power 
consumption, by means of the choice of the resource partitions 
that minimize the weighted average (over the classes) of 
blocking probabilities. 

II.C. Stochastic Knapsack – Complete Sharing (CS) 

As already mentioned, in the case in which the packets of all 
traffic streams require the same processing time, we can also 
configure a CS Admission Control strategy. Indeed, since the 
batch generation model of active flows is Poisson, the sum of 
batches generated by active flows would still be a Poisson flow. 
Of this aggregate single flow, where all ��� units are shared, 
we only need to know the batch arrival intensity, along with the 
first and second moments of the batch lengths. 

The batch arrival intensity averaged over all classes can be 
derived by applying the total probability theorem to the average 
batch arrival intensities of each class, by considering that the 

probability of arrival of a flow of class � is given by ��(�) ��@ , 

where �� = ∑ ��(7)H7;G :  



 

�̅ = 2 ��(�)
�� �(�)                            (10)

H

�;G
 

Analogously, we can define the average batch length over all 
classes as 


̅ = 2 ��(�)
�� 
(�)

H

�;G
                                 (11) 

Moreover, given the independence of the batch lengths of the 

various classes, if n(�)0  represents the variance of the batch length 

of class �, we have for the variance n0 of the aggregate batches: 

n0 = 2 ��(�)
��

H

�;G
n(�)0                                (12) 

and, consequently, for the mean square value 	0`̀`̀  of the 
aggregates 

	0`̀`̀ = n0 + 
̅0                                  (13) 

Given the presence of � flows of the aggregate traffic and � 
active computational resources, we can write the system 
utilization as 

� = ��̅
̅�
�                                    (14) 

and the condition on � for � < 1 as 

� < " �
��
̅�# − 1 ≡ �YZ[                 (15) 

 Finally, if the processing times of packets for all classes are 

the same (�(�) = �, � = 1, … , �), we can re-write the 
equivalent of expression (3) for the aggregate traffic (given � ≥1): 

*+(�, �) = 1
2�(1 − �) o(��)0 + 

−�(� − 1) + 2o�(� − 1) − 4(4 − 1)p67
8:0

7;0
+ 

+��,	0`̀`̀ 
̅⁄ − 1-5         (16) 

and, consequently, for the average delay 

E+(�, �) = *(�, �)
��̅
̅                             (17) 

Now we can define 

�YKq(�) = minr0 < � ≤ �YZ[: E+(�, �) ≤ EX+s  (18) 

where 

EX+ = �tF,EQ+(G), … , EQ+(H)-                      (19) 

is the most stringent requirement over the classes. An incoming 
flow belonging to the aggregate will be accepted if 

�YKq(� + 1) ≤ �YZ[                           (20) 

III. NUMERICAL RESULTS 

We analyze here various numerical results for the 
determination of the minimum number of active cores that 
respects the requirements at both packet and flow level. The 
results were obtained by iteratively finding the minimum 
number of active cores which satisfies the packet-level 
constraint (see Eqs. (4) and (5) in the CP case, and Eqs. (17)-
(19) in the CS case) and finding the partition that minimizes the 
flow-level objective function in the CP case (see Eq. (9)). We 
consider two classes, whose parameters, unless otherwise stated, 
are shown in Table I. 

We are going to consider first the results conditional to 

having �(�) accepted flows for class �. Therefore, the incoming 
traffic load of class � corresponds to: 

�(�)�(�)
(�)                                     (21) 

with �(�) = 0,1, … , �X YZ[(�)
. 

 

Fig. 1. Average packet waiting time (blue) and minimum number of 

active cores (red) for the Multi-Flow Multi-Server Queuing Model 

conditional to having �(G) = 0,1, … , �XYZ[(G)
 accepted flows for class 1 and 

with �(0) = 1. 
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TABLE I.  PARAMETER VALUES 

Parameter Numerical value 

��� 24 

�(G) 20 Mbatches/s 


(G) 2.3 pkts/batch 

�(G) 10 ns 

I�(G)
 10 

EQ+(G)
 50 ns 

= >	(G)0? 12.5 

�(0) 3.5 Mbatches/s 


(0) 1.9 pkts/batch 

�(0) 100 ns 

I�(0)
 0.1 

EQ+(0)
 100 ns 

= >	(0)0? 6.5 



 

 

Fig. 2. Energy saving  for the Multi-Flow Multi-Server Queuing Model 

conditional to having �(G) = 0,1, … , �XYZ[
�G�

 accepted flows for class 1 and with 

��0� � 1. 

Results for class 1 are shown in Figs. 1 and 2. Herein, we 
consider the model having a fixed number of accepted flows of 

class 2, with ��0� � 1. With respect to a single-flow queue the 
difference lies in the addition of the minimum number of cores 
for class 2 (in this case equal to 2 in order to satisfy the upper 
bound on the average waiting time), which is constant. 
Therefore, it is possible to highlight that the plots are similar to 
those in our previous work [19]. Fig. 1 shows the average 
waiting time and the minimum number of activated cores. The 
former increases until it reaches a depth which corresponds to an 
additional activated core to respect the constraint on the average 
waiting time, while the latter has an almost “step-wise” plot. Fig. 
2 shows the energy saving in percentage that is gained with the 
dynamic activation of the cores. Comparing all the plots with 
[19], we can highlight that here the energy savings are lower: 
graphically, in Fig. 2 the parts where the plot is parallel to the x-
axis are shorter. This can be attributed to the different packet-
level constraint: in [19] we considered an upper bound on the 
waiting time averaged with respect to the number of accepted 
flows, while here we consider the exact waiting time conditional 
to the number of active flows. Therefore, herein, the constraint 
is stricter, as the upper bound is satisfied for every single number 
of accepted flows. Now, let us introduce the results for the CP 
Multi-flow Multi-server queue: the number of accepted flows in 

the range >0,1, … , �XYZ[
��� ?, � � 1,2. Figs. 3 and 4 show the 

results for the number of active cores and the energy saving 
respectively. Again, it can be noticed that the plots in both 
figures have a “step-wise” trend. This trend is noticeable in two 
directions: one following the incoming traffic loads of class 1 
and one following the incoming traffic load of class 2. 

 

Fig. 4. Energy saving (in percentages) for the Multi-Flow Multi-Server 

Queuing Model conditional to having ��G� � 0,1, … , �XYZ[
�G�

 accepted flows in 

class 1 and ��0� � 0,1, … , �XYZ[
�0�

 accepted flows for class 2. 

 

Fig. 5. Average packet waiting time (blue) and minimum number of active 

cores (red) for the Complete Sharing Queuing Model conditional to having 

��0� � 0,1, … , �XYZ[
�0�

 accepted flows. 

 

Fig. 6. Energy saving (in percentages) for the Complete Sharing Queuing 

Model conditional to having ��0� � 0,1, … , �XYZ[
�0�

 accepted flows. 

 

Finally, we compare the CP and CS cases. Following the 
details in Section II.C, let us lose some generality by setting the 

service time: ��G� � ��0� � � � 60 Fu. Figs. 5 and 6 show the 
results for the CS case. First, we can notice that the plots (the red 

 

Fig. 3. Minimum number of active cores for the Multi-Flow Multi-

Server Queuing Model conditional to having ��G� � 0,1, … , �XYZ[
�G�

 

accepted flows for class 1 and ��0� � 0,1, … , �XYZ[
�0�

 accepted flows for 

class 2. 

 



 

one in Fig. 5, and the one in Fig. 6) lose the “stepwise” trend 
with respect to Complete Partitioning; this is already a 
qualitative sign of a lower energy saving. Numerically, we can 
compare the total energy saving (i.e., the area) between the two 
cases: we suppose CP with the same parameters as in Table I 

except for the service time (i.e., ��G� � ��0� � � � 60 ns) and 
CS with two fictitious classes both with the same incoming 
traffic load (the one shown in Figs. 5 and 6). Results show that 
the Complete Partitioning approach allows to save ~2.5 times 
the energy with respect to the Complete Sharing one. 

IV. CONCLUSIONS 

Recently, the topic of network energy efficiency has 
received again increased attention in the evolution toward 6G. 
In the light of this renewed interest, we have presented a 
modelling and control scheme for the load-adaptive activation 
of processing capacity to serve incoming flows, while satisfying 
requirements at packet and flow level. In detail, we have 

considered an M�/D/C queuing model that serves flows with 
different statistical features and performance requirements. 
Flows are described by a Stochastic Knapsack model over the 
feasible region defined by packet-level constraints, and subject 
to CP and CS admission control. Regarding the requirements, at 
packet level we have considered an upper bound on the average 
waiting time, while at flow level our aim is to minimize the 
weighted average of blocking probabilities. The final goal is to 
activate only the minimum number of cores. Results show that 
our proposed model can save energy while satisfying the 
requirements. Furthermore, we have compared the proposed 
model with one relying on another admission strategy: Complete 
Sharing. Results show that the Complete Partitioning model 
allows to save approximately 2.5 times more energy. 
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