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Introduction
Electricity infrastructure inspection costs have increased over the later years, as they 
are labour-intensive, time consuming and require experienced linesman or operators to 
identify faults before they cause severe infrastructure damage. Moreover, they are often 
assigned to third-party personnel, which does not provide guarantees for the inspection 
quality. Recent work Jenssen and Roverso (2018), has focused on the reduction of the 
overall cost and automation of the inspection procedure through the use of Unmanned 
Aerial Vehicles (UAVs). UAVs can access hard-to-reach places faster, with very low cost 
and with less risk than manual inspections.

UAV inspection allows to check for cracks and corrosions, missing insulators and 
detect thermography as well as wiring problems around towers and power lines. Usually, 
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the inspection is achieved by electricity operation center personnel and operators, that 
investigate the transmitted UAV footage and upon the detection of failures instruct 
operators to resolve the problems on-site. Identifying the electrical infrastructure, 
respective assets and faults though is time-consuming as it requires manual effort from 
the operators. To this end, Artificial Intelligence (AI) techniques are gradually employed 
to automate asset detection and hence reduce the inspection time (Lekidis et al. 2022). 
Coupled with 5G technologies they offer real-time latency that meets the requirements 
of UAV-based infrastructure inspection (3rd Generation Partnership Project 2019).

However, since the AI models are trained in the operation center with real-time video 
obtained from the UAVs, the identification of electrical assets depends to the use of the 
5G Core Network (5GCN) (3rd Generation Partnership Project 2019) resources for data 
exchange and service orchestration. As such resources are deployed in a central opera-
tion center this does not offer networking scalability (Satyanarayanan 2017). Instead, 
if the models are deployed and executed in edge nodes, networking issues would be 
avoided as training would be distributed using local UAV data. This also avoids a sin-
gle-point-of-failure for the automated UAV inspection in case a fault or a cyber-attack 
occurs in the operation center (Litchfield et  al. 2016). Furthermore, as training of the 
AI models is performance and memory intensive, Cloud environments are usually 
employed. The use of such environments though, imposes privacy issues as the sensitive 
company data are leaving the infrastructure facility.

The recent emergence of Federated Learning (FL) (AbdulRahman et al. 2020) allows 
edge nodes to receive configurations and parameters from the operation center whilst 
performing AI network training locally. Specifically, the operation center Cloud environ-
ment first defines a global model with learning parameters. Each worker downloads the 
global model, computes the model update by using its local UAV data and then offloads 
the computed local update back to the operation center. Afterwards, the operation 
center combines all local model updates and constructs a new improved global model. 
Furthermore, FL ensures privacy as the data does not leave the electrical infrastructure 
facility (Li et al. 2020).

In this article we introduce an FL method for automating the UAV inspection. The 
method is based on the use of edge nodes, running an edge platform that is used for 
interacting and offloading the computation from the UAVs. Moreover, data and con-
trol commands in the method are exchanged through the use of 5G Network Func-
tion Virtualization (NFV) technologies, such as network slicing and Multi-access (or 
Mobile as termed earlier) Edge Computing (ETSI: GR MEC 017 2018). Additionally, 
since UAV inspection applications have real-time requirements, the formed 5G network 
slice belongs to the Ultra-Reliable Low-Latency Communication (URLLC) category as 
defined by the third generation partnership (3GPP) Release 15 (3rd Generation Partner-
ship Project 2019). This category is identified by its reliability and low message latency 
requirements. Finally, the FL method is illustrated for the inspection of Public Power 
Corporation’s (PPC) research center, called Innovation Hub. The experiments illustrate 
the method benefits in comparison with the centralized UAV-based inspection (Lekidis 
et al. 2022). In terms of concrete contributions the article builds on the following:

• FL mechanisms for electricity infrastructure inspection by UAVs in urban areas.
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• MEC platform for electricity asset identification and fault detection using FL models.
• Automated update of the FL models through an interaction between the MEC plat-

form and PPC’s operation center.

The rest of the article is organized as follows. Section Background provides an overview 
of the UAV-based inspection phases, the AI models that are used for the inspection as 
well as an introduction to FL. Section Methodology provides an overview of the UAV-
based inspection approach using the FL method and the automation mechanisms for the 
interaction between the MEC platform of each edge node and PPC’s operation center. 
In section  Autonomous UAV inspection using federated learning  the methodology is 
applied in PPC’s Innovation Hub and experiments are conducted to demonstrate FL 
benefits in comparison with a centralized AI method for electrical infrastructure inspec-
tion. Finally, section Conclusion provides conclusions and perspectives for future work.

Background
In this section we provide an overview of the proposed electricity infrastructure inspec-
tion method, an introduction to Long Short Term Memory (LSTM) networks (Yu et al. 
2019) that are used for infrastructure asset and fault detection as well as a brief descrip-
tion of the FL approach.

UAV‑based infrastructure inspection

The time-critical requirements of the UAV-based infrastructure are ensured through the 
use of Network Function Virtualization (NFV) technologies and specifically the estab-
lishment of a URLLC network slice between the UAVs, the edge nodes and a operation 
center facility. To form the URLLC slice the operation center also includes an NFV Man-
agement and Orchestration (MANO) (Mijumbi et  al. 2016) Virtual Network Function 
(VNF) for lifecycle management and orchestration, 5GCN (3rd Generation Partnership 
Project 2019) and Radio Access Network (RAN) VNFs for data exchange as well as and 
User Plane Function (UPF) VNF for processing the user traffic. Additionally, the UAVs 
are also included in the network slice. In Fig. 1 illustrate the inspection method overview.

Specifically, the UAVs are controlled by edge nodes, which are also used for interpret-
ing and mapping in real-time the UAV location and flight plans. In the chosen architec-
ture each edge node is considered as a Commercial-of-the-Self hardware platform that is 
configured with a MEP in fixed ground locations (i.e. base stations). Moreover, through 

Fig. 1 UAV-based inspection of electricity infrastructures
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the FL method (Section Methodology) the edge nodes forward the model configurations 
and parameters from the local model to update the global model in the operation center. 
Forwarding is based on cellular 5G connectivity and proper routing mechanisms applied 
from one edge node to another.

The UAVs communicate with the edge nodes by using a dedicated antenna allow-
ing cellular 5G connectivity (Lekidis et  al. 2022). Edge nodes also include traffic rout-
ing functions to prevent potential collisions during take-off and landing. Furthermore, 
they aggregate data from multiple UAVs that are used for aerial inspections of electric-
ity infrastructures. Edge nodes reduce the distance of the communication loop from the 
UAV to the operation center as well as allow faster data-based decision making. This 
is accomplished through the encapsulation of the UAV data into common Internet of 
Things (IoT) protocol formats, such as the Constrained Application Protocol (CoAP) 
(Lekidis and Katsaros 2018).

Long short term memory networks

Long Short Term Memory networks LSTMs), first introduced by Hochreiter and 
Schmidhuber (1997), are a special kind of Recurrent Neural Network (RNN) (Med-
sker and Jain 2001), capable of learning long-term dependencies. All recurrent neural 
networks have the form of a chain of repeating modules of neural network. In stand-
ard RNNs, this repeating module will have a very simple structure, such as a single tanh 
layer. Moreover, traditional RNN models generally experience a vanishing gradient 
problem which impedes learning of long data sequences. This is because when the gradi-
ent becomes smaller, the RNN parameter updates become intangible, which hinders the 
learning process.

LSTMs also have a chain-based structure, with the main difference lying on the repeat-
ing module. Instead of having a single neural network layer, they constitute of four layers 
interacting in a very special way. In Fig.  2 the pink circles represent pointwise opera-
tions, like vector addition, while the yellow boxes are learned neural network layers. 

Fig. 2 LSTM layers and primitive operators
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Lines merging denote concatenation, while a line forking denote its content being copied 
and the copies going to different locations.

An important part of LSTMs is the cell state, that is represented by the horizontal line 
running through the top of the diagram through ht−1 to ht in Fig. 2. The cell state runs 
straight down the entire chain and allows information to flow along it unchanged. The 
LSTM does have the ability to remove or add information to the cell state, carefully reg-
ulated by structures called gates. Gates are a way to optionally let information through. 
They are composed out of a sigmoid neural net layer and a pointwise multiplication 
operation. The sigmoid layer outputs numbers between zero and one, describing how 
much of each component should be let through. A value of zero allows to let nothing 
through, while a value of one allows to let everything through.

An LSTM has three gates, namely, forget gate, input gate, and output gate, to protect 
and control the cell state. These three gates solve the vanishing gradient problem of 
RNNs by collectively controlling which information in the cell state to forget, given new 
information entered the network, and which information to be mapped to the network 
output. Furthermore, based on their architecture and layers, LSTM AI models are very 
effective in capturing dynamic temporal correlations. Such correlations are present in 
electricity infrastructures allowing the asset identification and detection of faults with 
high accuracy.

Federated learning

FL is a recently introduced AI approach, which aims at training a model across multiple 
local datasets, contained in decentralized edge nodes or servers. Specifically, the edge 
nodes store data samples locally and do not perform exchange to central external serves. 
This also aids in addressing critical issues such as data privacy, security and access rights 
to heterogeneous sources. The FL approach counters the challenges that are faced in 
(a) traditional centralized learning techniques where all data are forwarded to a cen-
tralized server and (b) classical distributed AI techniques, which assume that the local 
data are identically distributed and have the same size. The general FL design involves 
training AI models on data samples locally and exchanging parameters (e.g., weights in 
a RNN) among those local models to generate a global model. FL algorithms may either 
(1) employ a centralized server that orchestrates the various steps of the algorithm and 
serves as a main synchronization reference, or (2) they may also be peer-to-peer, where 
no centralized server exists. Due to the presence of a synchronization reference, the 
former are usually more preferable in large-scale deployments for controlling the asyn-
chronous data exchange through edge nodes. The FL process with a centralized server is 
divided into multiple rounds, each consisting of four steps: 

1 Local training all local edge nodes compute training gradients or parameters and 
send locally trained model parameters to the central server.

2 Model aggregation the central server performs secure aggregation of the uploaded 
parameters from all the local edge nodes without learning any local information.

3 Parameter broadcasting the central server broadcasts the aggregated parameters to 
the every local edge node.
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4 Model update all local edge nodes update their respective models with the received 
aggregated parameters and examine updated models’ performance. After several 
local training and update exchanges between the central server and its associated 
local edge nodes, it is possible to achieve a global optimal learning model.

The main considerations that are restraining FL usage in many applications are the fol-
lowing points: (1) heterogeneity of distributed devices that may cause security implica-
tions, (2) biased training dataset considerations from the individual devices (Kairouz 
et al. 2021) and (3) coordination of many devices during training, which is highly expen-
sive in terms of communication resources. However, to address point (1), employed 
devices include a Network-based Intrusion Detection System for early-stage detection 
of cyber-attacks (Lekidis et al. 2022) and for point (2) the formed 5G network slices for 
UAV-based inspections and the multiple inspection datasets ensure that data training is 
fair. Finally for point (3), the introduction of 5G NFV technologies aids in meeting the 
real-time requirements of critical applications, such as electricity infrastructure inspec-
tion and fault detection.

Methodology
In this section we describe the techniques for automated UAV-based inspection with 
edge nodes relying on the FL method (section  Background). Initially, we focus on 
describing the MEC platform running on the edge nodes and afterwards we illustrate 
the automated interaction for the UAV-based inspection using the FL method.

Mobile edge platform overview

UAVs have resource constraints at processing and storage level. Nevertheless, often the 
data that are gathered from the sensors require processing, before an actual verdict is 
reached that will lead to autonomous actuation actions. Additionally, storing the data 
locally at the device level may lead into overflow in memory or storage resources. A 
common solution to these issues that was followed till recently was the presence of a 
Cloud environment deployed in a virtualized or physical server of the operation center 
(Lekidis et al. 2022). However, industrial applications are characterized by real-time and 
critical operation that requires low latency, which cannot be provided when communi-
cating with Cloud platforms. Hence, a gradual shift is currently observed towards edge 
platforms, in order to provide a computational and storage layer to this architecture.

The MEC initiative (ETSI: GR MEC 017 2018) allows to extend the network slices by 
edge resources and services, such as MEC platform, and applications, the UPF, the RAN 
or even Cloud-native compute, network or storage functions. MEC ensures network 
scalability by distributing the processing from the centralized architecture of the Cloud 
platform to the edge that is located closer to the user. This allows faster response to user 
requests, since computations, data aggregation and analytics are handled within user 
proximity. A scheme that is currently followed is the presence of a dedicated manage-
ment entity on the edge for the resource lifecycle management, which includes instan-
tiation, decommissioning and other functionalities. Such entity is called Mobile Edge 
Platform (MEP) and provides distributed processing and storage capabilities that reduce 
the network management complexity.
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The MEP architecture is illustrated in Fig. 3 and it is deployed in each edge node. The 
architecture follows the standardized interfaces and components that are defined by the 
ETSI MEC Industry Specification Group (ISG) (ETSI: GR MEC 017 2018). Addition-
ally, it also includes a Virtualization Infrastructure Manager (VIM) (ETSI: GR MEC 017 
2018), which interacts with the NFV MANO to receive instructions for the configura-
tion of the VNFs and virtual links in each edge node. It allows to extend the 5G network 
slice for providing latency and performance improvements in UAV-based inspection as 
well as collision avoidance capabilities in UAV missions.

Initially, a resource interface component is used for data exchange with the UAVs. The 
interface is based on an extension of the Linux Foundation Fledge framework,1 which is 
also offered as VNF using the virtualization environment offered by Linux EVE.2 This 
environment offers isolation for the execution of applications in the mobile edge. The 
containers are managed by a lightweight version of Kubernetes, namely K3S,3 that is 
used both as a Mobile Edge Orchestrator (MEO) and as a VIM. Moreover, the entire 
processing and data exchange services are running on the MEP platform, which also 
contains the UPF. Additionally, the MEP platform also provides accurate geolocation 
and trajectory data for the UAVs, using constant communication with GPS satellites.

The communication with UAV-based protocols is facilitated through the Fledge 
resource interface that is included in each MEP (Fig.  3). Finally, every MEP is pro-
grammed to regulate the data exchange frequency, in order to maintain minimal edge 
resource utilization that leads to an extended battery lifetime for autonomous operation.

Fig. 3 Mobile edge platform architecture

1 https:// www. lfedge. org/ proje cts/ fledge/.
2 https:// www. lfedge. org/ proje cts/ eve/.
3 https:// k3s. io/.

https://www.lfedge.org/projects/fledge/
https://www.lfedge.org/projects/eve/
https://k3s.io/
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Federated learning incorporated in infrastructure inspection

The FL method provides a high-level of automation since each MEP is able to interact 
with the NFV MANO to provide autonomous operation for the system, as depicted 
in Fig. 4. The MANO that is employed the Open-Source NFV MANO (OSM)4 for the 
orchestration of 5G network slices. Moreover, FL ensures privacy, since the data remain 
at the edge level and are not stored in cloud platforms. Moreover, a potential failure to 
the Cloud environment leads to a loss of data, processing and management capabilities 
and hence a degradation of UE services and applications. A cause of failure is a poten-
tial overload or even a targeted cyber-attack. With a decentralized architecture a failure 
in the Cloud environment of the operation center can avoid such degradation as UE’s 
services and applications may be served by the nearest edge entity. Through the integra-
tion of 5G networks and MEC the FL models are updated and re-trained seamlessly with 
local data and footage from the infrastructure that is obtained from the UAVs.

Each MEP is also able to interact with the NFV MANO to provide autonomous opera-
tion for the system, as depicted in Fig. 4.

The interaction is enabled by the LSTM models that are using the FL method, in order 
to be trained and executed on the edge level. The reasoning behind the choice of FL lies 
in the presence of multiple edge Points-of-Presence (PoP) in different distributed loca-
tions, each one including a MEP platform. The MEP platforms use FL to train locally the 
LSTM models and receive the parameters and configurations from the Cloud environ-
ment where the NFV MANO is deployed, in order to perform infrastructure inspection 
closer to the UAV’s using their local data. Furthermore, the FL method allows to improve 
the efficiency and provide a high-level of network automation for the UAV-based infra-
structure inspection method. This is accomplished by performing data processing and 
caching in each edge PoP.

Fig. 4 Automated interaction between Edge and NFV MANO through FL APIs

4 https:// osm. etsi. org/.

https://osm.etsi.org/
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Moreover, the FL method provides automation in the formation and management of 
5G network slices. In this case, the MEP receives configuration instructions from the 
NFV MANO for network slice instantiation or extension on the edge level. Then, super-
vised training techniques are used to translate high-level intents from NFV MANO into 
concrete instructions on how to deploy and instantiate FL LSTM models in each edge 
PoP. Overall, the procedure that is followed is divided into three individual steps.

Initially intent-based policies are specified, in order to receive the parameters and 
configurations based on which the LSTM models that will be deployed and executed in 
each edge PoP for infrastructure asset identification and fault detection using the UAV 
video data. The use of intents allows to hide complexity, technology- and vendor-specific 
details. Intents are described in natural language and are translated into configurations 
through Natural Language Processing algorithms (Chowdhary 2020). Specifically, these 
algorithms are trained to receive input in form of textual description of the desired ser-
vice characteristics and then produce a domain specific encoding corresponding to the 
original intent. This process follows a step sequence: (1) the intents are pre-processed, 
(2) keywords are extracted and translated into meaningful actions and then (3) aggre-
gated and validated for lack of conflicts.

As a second step, appropriate Application Programming Interfaces (APIs) on the MEP 
are used to receive the intents and the LSTM model configuration and parameters that 
are used for the inspection of the specific infrastructure (Fig. 4). To this end, the ETSI 
MEC ISG has provided an initial set of API’s5 to facilitate this interaction. The APIs are 
registered and discovered over the Mp1 reference point defined in ETSI MEC archi-
tecture (ETSI: GR MEC 017 2018). Then, the associated LSTM models and VNFs are 
instantiated and connected using virtual links based on the intent translation of the pre-
vious step.the intents are translated into edge configurations for deploying and instanti-
ating the LSTM models.

The third step concerns the training of the LSTM models. This is accomplished by 
each MEP using local data from the UAVs and deployed models based on the intents 
that originate from the NFV MANO. Then, the LSTM models are executed to identify 
electricity infrastructures and respective assets. During the inspection and if the envis-
aged inspection accuracy is not achieved, the FL update service synchronizes with the 
MEC FL API (Fig.  4) to re-calibrate the LSTM models with different parameters and 
configurations that will provide accuracy improvements.

Autonomous UAV inspection using federated learning
We have deployed and tested the presented method on a fleet of hexacopter UAVs, 
which were used to inspect the PPC’s Innovation Hub in Kantza, Greece. The aerial 
image of the infrastructure is illustrated in Fig. 5.

The UAVs are of Foxtech - RHEA 160 type6 and are illustrated in the left part of 
Fig. 6, whereas the right part shows the process of programming them for conducting 
the electricity infrastructure inspection missions. Furthermore, the edge nodes used a 

5 https:// forge. etsi. org/ rep/ mec.
6 https:// www. foxte chfpv. com/ rhea- 160- hexac opter. html.

https://forge.etsi.org/rep/mec
https://www.foxtechfpv.com/rhea-160-hexacopter.html


Page 10 of 13Lekidis  Energy Informatics            (2022) 5:66 

configuration of a dual-core CPU with 2.0 GHz frequency, 4 GB RAM, 28 GB disk, an 
antenna and a SIM card slot for 5G connectivity.

The URLLC slice is formed using the OSM NFV MANO entity, which afterwards 
provides instructions to the K3s platform, allowing the configuration and instantiation 
of the edge VNFs. For the edge nodes we have configured the MEC platform, the UPF 
and application modules of the MEC platform as docker containers, managed as pods 
by K3s that is acting as a VIM (section  Methodology). Additionally, in the K3s deploy-
ment we have also included an nginx7 container to provide analytics and load balancing 
capabilities.

Two sets of experiments were performed with (1) a centralized inspection method 
where the LSTM models are deployed and executed in a Cloud environment of the oper-
ation center, using the approach presented in Lekidis et al. (2022), and (2) the FL method 
that is proposed in section  Methodology. The main difference of the two methods is that 
in the FL method the models are deployed and executed at the edge nodes through the 
MEP platform. Moreover, in the centralized method training phase was performed in 

Fig. 5 Aerial view of PPC’s Innovation Hub from the UAVs

Fig. 6 UAV programmed for the inspection

7 https:// www. nginx. com/.

https://www.nginx.com/
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the Cloud environment and had an average time of 3 h and 2 min, whereas with the FL 
method it lasted in average 2 h and 23 min. The results depicted high accuracy for the 
detection of missing insulator stems for the two methods as illustrated in Fig. 7.

Table 1 illustrates Key Performance Indicator (KPI) metrics for both the FL method 
and the centralized inspection method. The metrics include (1) average processing 
time for the discovery of assets and faults from the UAVs as a measure of performance, 
(2) reliability of the inspection method as a percentage for the trustworthiness of the 
inspection method in terms of the network slice and the involved resources and (3) fault 
discovery rate as a percentage of the faults discovered divided by the actual ones that 
actually happened.

As depicted from the table, FL provides several benefits in the UAV-based inspec-
tion method by (1) minimizing the processing time for the identification of infrastruc-
ture assets and the detection of faults to 3 min, (2) improving the reliability by 14.6% in 
comparison with the centralized AI inspection. Finally, the fault discovery rate depends 
on the data gathered by the UAVs and since the same data re used, the small difference 
originates from the faster detection time from execution of the models in the edge.

Conclusion
This article presents a UAV-based electricity infrastructure inspection method using FL-
oriented AI models deployed in edge computing nodes. The models that are employed 
for infrastructure inspection and fault detection are based on LSTM networks. Moreo-
ver, they are executed through an newly introduced MEP platform that distributes the 
computation and storage closer to the UAVs. The MEP platform also interacts with 
the Cloud environment on PPC’s operation center through dedicated APIs, ensuring a 
high level of automation. To this end, the NFV MANO of the Cloud platform provides 
high-level intents that are translated into concrete instructions on the model update, 

Fig. 7 Detection of missing insulator stems using federated learning

Table 1 KPI metrics for UAV-based inspection with and without federated learning

KPI Centralized AI inspection Federated 
learning 
inspection

Av. processing time 15 min 3 min

Reliability 75% 89.6%

Fault discovery rate 85% 85.3%
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deployment and execution at the edge. The method is illustrated for the inspection of 
PPC’s Innovation Hub, where experiments are conducted for both centralized inspec-
tion and the proposed FL method. The two methods are compared with KPIs focusing 
on processing time for the discovery of assets and faults from the UAVs, method reliabil-
ity and fault discovery rate.

As a part of our future work, we plan to develop a dedicated micro-service for each 
MEP, in order to enable further automation in the network slice which will be extended 
to the UAV-based inspection as well. Such service will also address interoperability con-
cerns, by providing a more efficient MEP response to resource/service discovery queries 
about each edge PoP service-layer and/or resource-layer status (available VNF services/
resources, AI models as well as active and historical service bindings). Moreover, we will 
investigate novel network slice isolation policies (Schneider et  al. 2018) to enable the 
optimal sharing of the 5G infrastructure resources based on the directions of the ETSI 
Zero Touch Network and Service Management (ZSM) Working Group (ETSI 2020).
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