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Abstract
Face detection in UAV imagery requires high accuracy and low execution time for real-time mission-critical operations in

public safety, emergency management, disaster relief and other applications. This study presents UWS-YOLO, a new

convolutional neural network (CNN)-based machine learning algorithm designed to address these demanding require-

ments. UWS-YOLO’s key strengths lie in its exceptional speed, remarkable accuracy and ability to handle complex UAV

operations. This algorithm presents a balanced and portable solution for real-time face detection in UAV applications.

Evaluation and comparison with the state-of-the-art algorithms using standard and UAV-specific datasets demonstrate

UWS-YOLO’s superiority. It achieves 59.29% of accuracy compared with 27.43% in a state-of-the-art solution RetinaFace

and 46.59% with YOLOv7. Additionally, UWS-YOLO operates at 11 milliseconds, which is 345% faster than RetinaFace

and 373% than YOLOv7.
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1 Introduction

Detecting and tracking down people on the ground from a

drone or unmanned aerial vehicle (UAV) is critical for a

myriad of applications such as remote monitoring and

surveillance, search and rescue to find missing people

[1, 2], people counting in dense crowds, emergency and

vigilance (e.g., the Drone Guard Angel in the EU H2020

project ARCADIAN-IoT) and public safety (e.g., surveil-

lance application in the EU H2020 project 5G-INDUCE)

[3]. Face detection is an active research area in the field of

computer vision to identify specific individuals. It is the

first step to develop a robust facial recognition system by

detecting and locating the human face from the obtained

image. Automatic face detection system plays a vital role

in face identification, facial expression recognition, head-

pose estimation and human–computer interaction among

others [4]. Although there has been a lot of research con-

ducted on facial detection, there are still several issues to

be addressed owing to various challenging operational

conditions being involved in facial detection from drones

including a high degree of variability, distance from the

camera, face orientation, illumination, face occlusion,

complex backgrounds, low resolution to name a few. These

challenges have a detrimental effect on the detection rate

and accuracy of the detection [4].

In addition, most of the research work is just focused on

accomplishing the task of detecting faces in the scene with

high accuracy. Nevertheless, the complete use case when

follow-up tasks are executed is not generally considered in

the research community. Figure 1 presents a typical

example of a flowchart in order to perform some of the

mentioned follow-up tasks, such as face identification,

expression recognition and head pose estimation. These

tasks are computationally expensive, and thus, their infer-

ence time is high. Therefore, the face detection task should

be fast and light, in order to allow other tasks to provide

results close to real time. This research is focused on

improving the inference time in the face detection stage.

Although having a low execution time is mandatory for

the success of different use cases, developing and execut-

ing a low computationally expensive algorithm is key to

reduce the required amount of memory needed from the

GPU (Graphics Processing Unit). Current research work

should focus on lowering the rate of operations per second
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to allow other algorithms to perform in parallel in the same

GPU.

The aim of this study is to create a convolutional neural

network (CNN) specifically designed for deployment with

unmanned aerial systems (UAS). The CNN targets for a

trade-off among accuracy, speed and portability. The

solution should achieve high accuracy able to detect small

faces within large images even if the faces consist of only a

few pixels. In addition, in order to overcome the high-

lighted challenges, the CNN is optimized in terms of speed

to achieve an execution time beyond real time (faster than

30 frames per second). Finally, this algorithm is power-

efficient with low computational demands. As a result, our

contributions are summarized as follows:

• Up-to-date literature review on face detection tech-

niques and their limitations.

• Design and implementation of a novel CNN-based

algorithm (UWS-YOLO) to perform facial detection

from a UAV.

• Creation, processing and labeling of a new dataset with

people’s faces recorded from a UAV at different

distances.

• Performing qualitative and quantitative evaluation, and

comparison with state-of-the-art algorithms (Retina-

Face and YOLOv7) in terms of performance.

The organization of the paper is as follows: Sect. 2 reviews

the related work. Section 3 describes the design of the

proposed solution to perform facial detection, followed by

the implementation setup in Sect 4. Section 5 presents the

results of the proposed solution. Finally, Sect. 6 concludes

the paper.

2 Related work

The aim of this section is to explain the techniques used in

this paper. In addition, it reviews state-of-the-art work

related to facial detection.

2.1 Machine learning techniques

The methods commonly used to detect faces from images

or videos are divided into two main categories: feature-

based and image-based approaches. The feature-based

approaches such as Viola-Jones [5] and Gabor features-

based methods [6] focus on extracting main facial features

which result in sub-optical facial detection [4]. These

methods are fast but fail when the detections are from

different angles and lighting conditions [7]. Image-based

approaches including deep convolutional neural networks

have inspired face detection in recent years. There are two

categories for CNN-based face detectors, region-based

(two-stage) and single-stage methods. Fast RCNN [8],

Faster RCNN [9] and R-FCN [10] are common region-

based methods. They have achieved high accuracy at the

cost of speed. The single-stage methods including YOLO

series [11–13] and SSD (single-shot detector) [14] have

achieved high inference time but lower accuracy compared

to two-stage approaches. RetinaFace [15] using Resnet-152

as backbone achieves great accuracy but has a high infer-

ence time while processing HD (1920 9 1080) or 4k

(4096 9 2160) images.

Fig. 1 Flowchart with examples of the use of face detection with follow-up tasks with their average inference time
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2.2 Advanced network configurations

The aforementioned single-stage CNNs may be configured

in order to achieve higher accuracy for low-pixel size

object detection. Spatial Pyramid Pooling (SPP) and Path

Aggregation Network (PAN) are two advanced techniques

that keep the small features extracted in the preliminary

CNN’s layers to increase the accuracy at almost no cost in

execution speed.

2.2.1 Spatial pyramid pooling (SPP)

The SPP [16] uses large max poolings to improve the

receptive field and consequently increases the accuracy of

the architecture. It is robust to object deformation and

carries out information cumulation at a deeper stage of the

neural network. To increase the receptive field and get

better accuracy, the strides in the SPP module were chan-

ged to 7 x 7, 10 x 10 and 13 x 13 in the backbone of the

proposed architecture.

2.2.2 Path aggregation network (PAN)

PAN is a method for the improvement of the detection of

small objects. To achieve this, the features of the top layers

with more information are combined with the deeper layers

with more shallow features [17]. In this study, the PAN

architecture was modified using an additional upsampling

to keep more meaningful information which is essential for

the detection of small objects.

2.3 Facial detection

This subsection compares state-of-the-art facial detection

results with the proposed approach in this article. The

results have been obtained from the papers of each algo-

rithm. Table 1 shows the comparative analysis.

In one study, [18] proposed a face detection technique

implemented on a Raspberry Pi. Haar cascade classifier

algorithm was implemented using OpenCV [19]. The

Droneface dataset [20] was used as the facial image data-

set. Although high accuracy was obtained (98%, 93%, 86%

and 80%) for distances of 1.5, 3, 4 and 5 m, respectively,

the detections were not tested from an altitude of more than

5 m. In addition, the speed of the model has not been

reported. In another study, [21] proposed an enhanced

YOLOv3 algorithm for face detection being comparable

with YOLOv3 and YOLOv4. The mAP of 51.9% was

achieved using WIDER FACE dataset [22] which is less

than our model with mAP of 72.26%. The speed of the

model has not also been reported.

In [7], a fast customized CNN was implemented suit-

able for UAV use cases. In [23] and [24], although high

performance has been achieved for face detection and

identification, they are not fast enough for our use case and

they have been tested up to a distance of 10 m. In [25], a

Mobilenet-SSD was implemented in TensorFlow for facial

detection. Although very high accuracy was obtained

(91.92%), the algorithm was not tested on the drone. In

another study [26], YOLOv3 was implemented on Rasp-

berry Pi for facial detection. This study is slow for our use

case (6.7 frames per second) and has been tested at a dis-

tance of 3.8 m. In [27], Local Binary Pattern Histogram

(LBPH) was used as a face recognizer for anti-theft and

surveillance applications. Although it has obtained a high

accuracy of 89.1%, the speed and the distance have not

been reported.

In [28] a high accuracy is achieved in the WIDER FACE

dataset but without specifying what input size was used to

obtain this accuracy. Moreover, it achieves almost real-

time inference speed being close to 30 frames per second

(FPS) which is slower than our model (91 FPS). In [29] and

[30] a high accuracy is achieved in the WIDER FACE

dataset, but the inference time has not been reported. In

[31] a modification of RetinaNet to improve accuracy and

speed is presented. However, our model achieves better

results in terms of accuracy and inference time in the

WIDER FACE dataset.

In summary, current literature does not consider deeply

the challenges involved in facial detection from UAVs

including altitude, illumination and face orientation among

others and the models used in these studies are computa-

tionally expensive. However, our proposed solution redu-

ces the computational power to make it more suitable for

portable, resource-constrained devices.

3 Design of the proposed algorithm

The proposed algorithm is designed to strike a balance

between accuracy, speed and portability. The UWS-YOLO

integrates three key components to create an effective

solution for face detection. First, a robust backbone

architecture to achieve high accuracy, followed up by an

SPP module with modified strides of 7, 10 and 13 in the

max poolings. Finally, an enhanced PAN increases the

accuracy for small object detection. Figure 2 presents the

architecture of the proposed solution combining all the

techniques implemented.

3.1 The backbone

The baseline of the proposed solution is the Tiny-YOLOv4

[32] backbone whose main strength is the low execution
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speed (4 ms). This backbone serves as the foundation of

the UWS-YOLO algorithm; nevertheless, its main flaw is

the low accuracy that it presents. Our solution includes

Cross-Stage Partial Networks (CSPBlock) modules which

replace the ResBlock module in the residual network

(marked as a). CSPBlocks [33] were chosen in order to

improve the correlation difference of gradient information

and enhance the learning ability of the convolution net-

work. The feature maps are divided into two branches to

apply different transformations and then concatenated back

together. UWS-YOLO includes three CSPBlock modules

with 64, 128 and 256 filters. The parameters of the

CSPBlocks are adopted according to [34]. Experiments

with various filter numbers have been carried out in order

to choose the best.

To implement this architecture, firstly similar to

YOLOv4, the CSPBlock modules were used in the back-

bone of the proposed architecture. Cross-stage residual

edge is used in the CSPBlock module to combine the two

divided feature maps (groupid=1/2 in the figure). This

enhances the learning ability of convolution networks

compared with the ResBlock module.

The filter number of 64 in the first CSPBlock module is

divided into two convolutions of 32 filters and then com-

bined with 3x3 convolution at the beginning of the back-

bone with 32 filters. The results are then passed to a 3x3

convolution with a filter number of 64 and combined with

the shortcut from the first convolution with the filter

number of 64.

The filter number of the second CSPBlock module is

128 and divides into two convolutions of 64 filters and then

combined with a 3x3 convolution of the backbone with 64

filters. The results are then passed to a 3x3 convolution

with a filter number of 128 and combined with the shortcut

from the first convolution with the filter number of 128.

The last module starts with a convolution of 256 filters

and divides into two convolutions with filters of 128 and

then combined with a shortcut from the convolution with

128 filters. The results are then passed to a 3x3 convolution

with filter number of 64. The result is combined with the

shortcut from the first convolution with filter 256.

Secondly to improve the receptive field of the backbone,

an SSP module was modified concatenating the max-

pooling outputs with kernel sizes of 7, 10 and 13, respec-

tively. The concatenation of these max-pooling outputs

improved the accuracy of the architecture.

Thirdly, to be able to detect small faces from long dis-

tances, a modified PAN module was included to the

backbone of the architecture with an additional bottom-up

path augmentation added to the FPN architecture to

aggregate features from low-level layers with more

detailed information and the higher-level layers with more

semantic information. An extra upsampling (3 downsam-

pling with factors of 16, 8 and 4) was added to the PAN

architecture in comparison with YOLOV4 to keep shal-

lower features. The concatenation of the features from the

bottom-up path goes through a 1 9 1 convolution.

3.2 Enhanced spatial pyramid pooling (SPP)

The second component, an enhanced spatial pyramid

pooling (SPP) [16], is included at the end of the backup

(marked as b) at the end of the backbone. This technique

provides the capability to handle different sizes of the

Table 1 Comparison of facial

detection solutions
References Algorithm Exec

Env.

Platform Accuracy Speed

(FPS)

Model

size

Distance

[18] Haar cascade RPi OpenCV 98.00% NG NG Up to 5 m

[21] Enhanced YOLOv3 PC Darknet 51.90% NG NG WF distance

[7] Customzed CNN PC Caffe 77.40%* 31.0 NG WF distance

[23] LSTM PC NG 99.20% 00.7 NG 3–6 m

[24] SVM PC OpenCV 97.50% 13.0 NG 2–10 m

[26] YOLOv3 RPi NG NG 06.7 NG 3.8 m

[25] Mobilenet-SSD PC TensorFlow 91.92% 39.0 NG NG

[27] LBPH RPi NG 89.10% NG NG NG

[28] IRNet PC PyTorch 76.60% 31.3 1.68 MB WF distance

[29] Enhanced YOLOX PC PyTorch 87.38% NG NG WF distance

[31] Enhanced RetinaNet PC PyTorch 41.00% 11.8 NG WF distance

[30] EfficientFace PC PyTorch 90.10% NG NG WF distance

TP UWS-YOLO PC Darknet 59.29% 91.0 49 MB 2–30 m

TP = This Paper; NG = Not Given; RPi = Raspberry Pi; WF = WIDER FACE; *=Recall
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image input sizes and this capture multi-scale information

from different spatial resolutions being this a key factor

when detecting object at low resolutions from large images.

By deploying this technique, the CNN become more robust

when the UAV is flying at different altitudes because the

algorithm is less affected by variations in the size of the

faces.

3.3 Enhanced path aggregation network (PAN)

A modified path aggregation network (PAN) [17] module

was also added (Marked as c) in the algorithm with three

upsamplings (compared to YOLOv4). This technique

enhances the capability of keeping the fine-grained features

from the first layers along the computation of the following

ones. This becomes an important matter when the details

extracted from low-pixel size faces may be lost along the

CNN.

The number of filters selected was 64, 128, 256, 128 and

64, respectively. The extra bottom-up path augmentation

was down-sampled (3 downsamplings compared to two

downsamplings in YOLOv4) with factors of 16, 8 and 4,

respectively. The number of filters selected was 64. The

features from the bottom-up path were then concatenated,

Fig. 2 The architecture of UWS-YOLO face detector
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and 1 � 1 convolution was run on the result. The coordi-

nates, probability and confidence were obtained using

YOLOv3 headers. The YOLOv3 headers were used to

output the coordinates, probability and level of confidence.

19 � 19, 38 � 38 and 76 � 76 are the feature maps of the

YOLOv3 header.

4 Implementation and deployment

This section presents the implementation and deployment

of the UWS-YOLO in order to detect faces from UAV

images and videos. It describes how the proposed solution

is trained and tested in addition to the datasets used to

evaluate results. Besides, further explanation is given

regarding standards algorithms commonly employed to

perform face detection in order to be compared against our

algorithm.

4.1 Face detection datasets

Several algorithms are compared in terms of accuracy and

speed. Every algorithm presented should be trained and

evaluated over the same dataset in order to perform a fair

comparison. In this manuscript, two datasets are presented.

First, a publicly available dataset named WIDER FACE is

mainly composed of images taken at ground level. Sec-

ondly, the authors of the manuscript created a face detec-

tion dataset recorded from a UAV: UAV-UWS dataset.

4.1.1 WIDER FACE

One of the largest datasets for face recognition is WIDER

FACE dataset. It contains 32,203 images and 393,703 faces

which is an average of 12 faces per image. The different

illumination, scales, poses and occlusions included in this

dataset make it a challenging task to achieve very high

accuracy. WIDER FACE [22] is divided into three levels of

difficulties, namely easy, medium and difficult. The accu-

racies in this research have been obtained by joining all

three subsets together.

In order to allow other researchers to compare their

algorithms against UWS-YOLO, this manuscript uses this

dataset as the benchmark to compare our proposed solution

with the state-of-the-art architectures; however, UWS-

YOLO is optimized for low-pixel face recognition and not

for close range images.

4.1.2 UAV-UWS dataset

In the scope of this research work, the authors have also

created a dataset to test the algorithms in videos captured

from a drone. This dataset was recorded using a DJI Mini 2

UAV. The frames obtained have a 4K resolution

(3840 � 2160 pixels) and a frame rate of 30 fps.

In total, 20 people from different ethnicities were

recorded for the dataset. For each person, a video of 30 s

was recorded at 8 different distances from the drone to the

face (2, 5, 7, 10, 15, 20, 25 and 30 m). Therefore, the

dataset is composed of 144,000 different frames. The UAV

was positioned at 30� above the face at each distance.

Furthermore, the people recorded were asked to do dif-

ferent head movements to get a complete view of the whole

face. Figure 3 shows an example of the head movements

asked to every volunteer. Initially, participants were asked

to execute a lateral head movement, looking first to the left

and then to the right. Following this, a full circular

movement with the head was made to cover the rest of the

positions, including upward and downward positions.

Finally, the volunteers were asked to stare directly at the

drone, looking forward.

Due to the similarity of the faces in consecutive frames,

the test dataset has been created extracting only one frame

per second. Therefore, the dataset used for testing is

composed of 4,800 images with a ratio of one face per

image.

It is worth noting that GDPR (General Data Protection

Regulation) compliance is a critical consideration in our

Fig. 3 Examples of the different face positions recorded in the UAV-

UWS dataset
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data-gathering process, as we are committed to respecting

individuals’ privacy and adhering to the regulations. While

the dataset may be relatively small in comparison with

some other studies, it has been meticulously curated to

cater specifically to the objectives of our research. We

emphasize that the dataset’s size is appropriate for the

testing and validation of our proposed model and offers a

representative sample for the intended use case.

Table 2 shows the average face size, face at each dis-

tance of our dataset with two image sizes: the original 4K

resolution and after being resized to 608 9 608. As can be

seen, at higher than 15 m, the size of the faces in the

resized image is less than 10 pixels. The smallest face is at

30 m where the average size is only 2 9 5 pixels in the

resized image.

4.2 Face detection algorithms

UWS-YOLO is compared against RetinaFace [15] and

YOLOv7 [35] in terms of accuracy, inference time, loading

time of the model and model size. To compare all algo-

rithms, these were trained in the same conditions over the

same dataset. First, every algorithm was trained with the

general dataset WIDER FACE. Then, each algorithm is

evaluated over the testing dataset of WIDER FACE.

Finally, to compare the accuracy of the algorithms when

detecting faces from UAV images at high altitudes, the

UAV-UWS dataset is used as a testing dataset; therefore,

this dataset is only used for verification of the algorithms.

This process is useful for comparing how each algorithm

with the same training behaves at different distances.

4.3 Hyperparameters

Table 3 shows the execution hyperparameters used to train

UWS-YOLO, RetinaFace and YOLOv7.

4.3.1 RetinaFace–ResNet50

A momentum coefficient of 0.9 was used for training. The

input size of the training images was 640 � 640 px, and the

batch size used was 8. Moreover, the machine learning

execution platform for RetinaFace was TensorFlow 2.5.3

[36].

4.3.2 UWS-YOLO

We utilize a momentum coefficient of 0.9 as the learning

policy. An image input size of 608 � 608 px was used in

our training with a batch size of 64. The machine learning

execution platform used was Darknet [37].

4.3.3 YOLOv7

YOLOv7 was trained with a momentum coefficient of 0.9.

608 � 608 px is the size as the images are fed in YOLOv7.

The batch size chosen is 8. The machine learning execution

platform is Darknet [37].

4.4 Intersection over Union (IoU)

The Intersection over Union (IoU) is a fundamental metric

used in object detection. The IoU measures the overlap

between the predicted bounding box and the ground truth

bounding box, providing a quantitative assessment of the

accuracy of the detection. As shown in Fig. 4, the IoU is

defined as the area of overlap (intersection) between the

bounding boxes divided by the area of union.

Face detection is only one stage in the pipeline of our

use case. Therefore, subsequent stages rely heavily on

obtaining accurate face images to achieve high accuracy.

For instance, in face verification tasks, having precise face

images is crucial for obtaining successful results. Hence, an

accurate bounding box around the face is of utmost

Table 2 Distance from the camera to the face versus the size of the

detected face in pixels (px) for the original resolution and the resized

image

Distance Size face

3840 � 2160 px 608 � 608 px

2 m 125 � 170 px 20 � 28 px

5 m 80 � 98 px 13 � 28 px

7 m 50 � 59 px 8 � 17 px

10 m 38 � 44 px 6 � 12 px

15 m 25 � 31 px 4 � 9 px

20 m 20 � 24 px 3 � 7 px

25 m 17 � 19 px 3 � 5 px

30 m 14 � 19 px 2 � 5 px

Table 3 Execution hyperparameters

Hyperparameters RF-ResNet50 UWS-YOLO YoloV7

Image size in pixel 640 9 640 608 9 608 608 9 608

Number of iteration 161000 40000 120000

Batch size 8 64 8

Momentum coefficient 0.9 0.9 0.9
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importance, and this is where the IoU threshold becomes

crucial.

Figure 5 illustrates three different face detections vary-

ing the IoU threshold. The green bounding box represents

the ground truth, while the red one corresponds to the face

detected by the model. With an IoU of 90% (Fig. 5a) the

detected face closely matches the ground truth. When using

an IoU of 75% (Fig. 5b) a small portion of the face is lost,

but the results are still satisfactory for subsequent stages.

However, with an IoU of 50% (Fig. 5c) a significant part of

the face is lost, possibly even an eye from the bounding

box. This makes it challenging for the next stages to

achieve excellent results; however, the impact is not sig-

nificant. In cases with an IoU below 50%, it becomes

impossible to achieve good results in the next stages as

more than half of the face may be lost.

Therefore, in this study, the accuracy of the models will

be compared using these three IoU values: 90%, 75% and

50%.

4.5 Pipeline

The pipeline is divided into three stages as depicted in

Fig. 6. First, the image is preprocessed, and then it is fed

into the neural network. Finally, the results are post-pro-

cessed to obtain the bounding boxes with confidence scores

for each detection. The input to the pipeline is a single

frame.

4.5.1 Preprocessing

The preprocessing stage consists of three steps aimed at

preparing the captured frame for the neural network.

1. Resize: The image is resized to match the input size

required by the neural network. In this process, the

OpenCV resize function is utilized.

2. Scaling: The pixel values in each channel are scaled to

fit within the range expected by the neural network.

3. Channel conversion: The image is converted from the

BGR (Blue-Green-Red) color space to RGB (Red-

Green-Blue). Moreover, the channel dimensions are

transposed from (N, H, W, C) to (N, C, H, W), where N

represents the number of images in a batch, C is the

number of channels in the image, H is the height of the

image, and W is the width.

4.5.2 Convolutional neural network (CNN)

The preprocessed image is then passed through a CNN. For

this research, three different CNN models were employed:

RetinaFace, YOLO-UWS and YOLOv7. Each model pro-

duces detection candidates along with their corresponding

confidence scores.

Fig. 4 IoU formula with example figures

Fig. 5 Examples of face detections using three different IoU thresholds: 90%, 75% and 50%
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4.5.3 Detections

A detection threshold is defined to determine the accep-

tance of a detection. If the confidence score of a detection

is higher than the threshold, it is considered a valid

detection; otherwise, it is discarded. Lowering the thresh-

old will increase the number of true detections but also lead

to an increase in false detections; therefore, it may reduce

the accuracy. The choice of an appropriate threshold is

crucial to achieve high accuracy with each model. Once the

detections are confirmed, the bounding boxes are resized to

match the dimensions of the original size.

The output of the pipeline consists of the bounding

boxes for each detection, defined by the coordinates of the

top-left corner of the bounding box, as well as its width and

height. Furthermore, the pipeline provides the confidence

score for each detection.

5 Empirical results and discussion

This section presents both quantitative and qualitative

results from various experiments conducted to facilitate a

comprehensive comparison of the algorithms. The quanti-

tative results subsection shows the comparison of Retina-

Face (with three different input sizes), YOLOv7 and UWS-

YOLO on different metrics such as the inference time, the

build time, the weights size and the accuracy of the algo-

rithms. The last one has been analyzed on two different

datasets—WIDER FACE and UAV-UWS. The qualitative

results show what can our algorithm (UWS-YOLO)

achieve on images at different distances.

5.1 Experimentation environment

The experiments have been carried out on a computer with

an Intel(R) Xeon(R) E5-2630 v4 at 2.20 GHz with 20 cores

and 32 GB of RAM. In addition, an NVIDIA GeForce

GTX TITAN X with 12 GB of onboard memory with

CUDA compatibility [38] was used. The Operative System

(OS) used is Focal Ubuntu 20.04.3 with a Kernel version of

5.11.00.

5.2 Quantitative results

5.2.1 Accuracy

The accuracy of the models has been evaluated using three

different approaches. Firstly, the WIDER FACE dataset

was utilized, employing three IoUs (Intersection Over

Union): 0.5, 0.75 and 0.9. Subsequently, the models were

tested on the UAV-UWS dataset employing the same IoUs.

Finally, they were tested on the UAV-UWS dataset but at

every distance with a fixed IoU of 0.5. All the results have

been obtained from experiments conducted specifically for

this study.

Table 4 shows the results for the WIDER FACE dataset.

Among the models, YOLOv7 exhibits the lowest accuracy.

UWS-YOLO demonstrates modest performance and mat-

ches the accuracy of RetinaFace only when using an input

size of 416 px and the most permissive IoU (50%). Reti-

naFace achieves the highest accuracy across all IoU, par-

ticularly with an input size of 1600 px.

Table 5 presents the accuracy of the models on the

UAV-UWS dataset. Our model (UWS-YOLO) demon-

strates exceptional accuracy, second only to RetinaFace

with an input size of 1600 px. Compared with models with

the same input size, UWS-YOLO achieves þ12:7% better

accuracy than YOLOv7 and þ31:86% improvement over

RetinaFace with an IoU of 50%. Even with a stricter IoU of

90%, UWS-YOLO outperforms YOLOv7 by þ3:96% and

RetinaFace by þ2:33%.

Table 6 shows the accuracy of the models on the UAV-

UWS dataset for each of the eight distances recorded: 2, 5,

7, 10, 15, 20, 25 and 30 m. At a distance of 2 m, all models

Fig. 6 IoU formula with example figures

Table 4 Accuracy of UWS-YOLO and RetinaFace for WIDER

FACE dataset varying IoU percentage

Models IoU

90% 75% 50%

RetinaFace—416 px 2.35% 43.61% 72.40%

RetinaFace—608 px 3.80% 53.60% 81.96%

RetinaFace—1600 px 4.76% 63.60% 93.05%

YOLOv7—608 px 0.69% 29.62% 65.43%

UWS-YOLO—608 px 1.66% 32.98% 72.26%
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achieve similar results, but both YOLO variants (YOLOv7

and UWS-YOLO) achieve the highest accuracy, exceeding

87% of accuracy. At 5 m, better results are observed,

except for RetinaFace with an input size of 416 px, which

fails to detect faces beyond 5 m. Moreover, RetinaFace

with an input size of 608 px can only detect faces up to

10 m, where it achieves an accuracy of merely 0.35%. This

indicates that RetinaFace with a small input size is only

able to detect faces accurately at short distances.

RetinaFace with an input size of 1600 px, YOLOv7 and

UWS-YOLO is the only model that achieves good results

at longer distances (more than 10 m) as indicated in the

table. At 25 and 30 m, YOLOv7 struggles to detect any

face, resulting in significantly low accuracy (0.15% and

0.01%, respectively). In contrast, UWS-YOLO achieves an

accuracy of more than 8% at 25 m and 2.22% at 30 m,

surpassing even RetinaFace with an input size of 1600 px

by þ1:83%.

These results demonstrate that our model UWS-YOLO

performs well at both short and long distances, surpassing,

at some distances, models with nearly three times larger

input sizes. Furthermore, when compared to models with

the same input size, UWS-YOLO consistently accom-

plishes superior results across all distances.

5.2.2 Built time, weights size and inference time

Table 7 provides a comparison of the built time, the

weights size and the inference time for the three models

under consideration. The values shown are with the same

input size of 608 px for all three models. YoloV7 exhibits

the longest building time, taking approximately 4 s, and it

has also the biggest weights size of 140 MB. In contrast,

RetinaFace has a build time of around 2.5 s with a weights

size close to 130 MB. Notably, our proposed model, UWS-

YOLO, demonstrates the fastest build time of only 1.5 s,

showcasing its speed and stands out as the most lightweight

model with only a weights size of 49 MB.

Regarding inference time, a correlation can be observed

with the weights size. Our proposed model achieves the

fastest inference time, merely 11 ms, equivalent to 91 fps.

In contrast, RetinaFace has an inference time of 38 ms (26

fps) while YoloV7 is the slowest with 41 ms (24 fps).

Therefore, our model stands as the only one capable of

achieving real-time processing, defined at a frame rate of

30 fps.

Our proposed model is þ345% faster than RetinaFace

achieving better accuracy when evaluated on the UAV-

UWS dataset. Furthermore, in comparison with YoloV7,

our model outperforms it significantly, being þ373% faster

and showcasing better accuracy across all tested datasets,

including WIDERFACE.

Table 5 Accuracy of UWS-YOLO and RetinaFace for UAV-UWS

dataset varying IoU percentage

Models IoU

90% 75% 50%

RetinaFace—416 px 1.34% 9.52% 14.85%

RetinaFace—608 px 4.81% 19.17% 27.43%

RetinaFace—1600 px 24.14% 51.24% 64.74%

YOLOv7—608 px 3.18% 32.91% 46.59%

UWS-YOLO—608 px 7.14% 37.86% 59.29%

Table 6 Accuracy at different flying distances = IoU 50%

Models Metric type Distance

2 m 5 m 7 m 10 m 15 m 20 m 25 m 30 m

RetinaFace - 416 px mAP 82.64% 29.71% 0% 0% 0% 0% 0% 0%

RetinaFace - 608 px mAP 83.29% 84.75% 45.04% 0.35% 0% 0% 0% 0%

RetinaFace - 1600 px mAP 83.60% 92.18% 98.63% 90.81% 82.44% 55.54% 10.62% 0.39%

YOLOv7 - 608 px mAP 87.67% 92.05% 84.65% 60.42% 36.23% 4.95% 0.15% 0.01%

UWS-YOLO - 608px mAP 87.58% 93.52% 92.90% 75.62% 60.15% 37.35% 8.54% 2.22%

Table 7 Build time, weights size and inference time for the three

compared models with input size of 608 px

Model Build time Weights size Inference time

RetinaFace 2426 ms 128 MB 26 fps (38 ms)

YoloV7 4040 ms 140 MB 24 fps (41 ms)

UWS-YOLO 1552 ms 49 MB 91 fps (11 ms)
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5.2.3 Inference time and mAP comparison over different
input sizes

Figure 7 shows the relation between the accuracy and the

inference time in our UAV-UWS dataset. It has been

compared using the three models—RetinaFace, YOLOv7

and UWS-YOLO—with three different input sizes—416,

608 and 1600 px. In the figure, the leftmost area indicates

the fastest models, while the area at the top indicates

models with higher accuracy. The figure also shows where

is the real-time processing defined as 33 ms (30 fps). Any

model on the left of this vertical line will execute real-time

detections.

YOLOv7 and RetinaFace models only achieve real-time

processing with their smallest input size (416), while our

model achieves it even with an input size of 608. Fur-

thermore, not only our model is faster than the others at

these input sizes (416 and 608) but also it achieves a higher

accuracy. Using an input size of 416, our model is þ371%

faster than RetinaFace and has an accuracy improvement of

þ18:31%. Moreover, it is þ314% faster than YOLOv7 and

better accuracy by þ3:54%.

Our model was trained with an input size of 608 px;

therefore, the best results will be when this input size is

used. Figure 7 reflects this. Our model is the upper leftmost

compared to the other models. As mentioned in previous

sections, our model with this input size is þ345% faster

than RetinaFace and þ373% than YOLOv7. It also has

þ31:86% and þ12:7% higher accuracy than RetinaFace

and YOLOv7, respectively.

On the other side, with an input size of 1600 px, our

model is faster than the other models (þ330% than Reti-

naFace and þ365% than YOLOv7), but it has lower

accuracy (�3:68% than RetinaFace and �8:07% than

YOLOv7).

Although RetinaFace-1600px achieves the highest

accuracy (69.16%), its inference time is also really high

(208 ms). Moreover, UWS-YOLO does not show a great

accuracy difference when increasing the input size to 1600

px (1.8% more), but the inference time increased signifi-

cantly (46 ms more), being slower than real time. This can

be seen in Fig. 7. Therefore, based on the trade-off between

high speed and high accuracy and that real-time processing

is needed, our algorithm UWS-YOLO-608px will achieve

the best results.

5.3 Qualitative results

Figure 8 shows frames from our UAV-UWS dataset at four

different distances and head positions. Each frame contains

only one person and therefore one face. Figure 8a shows a

volunteer at 2 m with the head facing right down. The face

was detected by our model with a confidence score of 58%.

The low confidence score can be attributed to the person’s

face facing down, resulting in an obscured facial appear-

ance. This demonstrates the capability of our algorithm to

detect faces under conditions where not all facial features

are readily visible. Figure 8b shows the same volunteer in

the same position but at a distance of 7 m. Our model is

able to detect the face with a confidence score of 61%.

Again, this confidence score can be attributed to the

downward-facing orientation of the face.

In Fig. 8c the person is at 20 m and is looking directly at

the drone. The face is detected with a confidence score of

81%. The model achieves a high confidence score even at

far distances as the person is facing the drone and all the

face features can be appreciated. Finally, Fig. 8d shows the

same person staring at the drone but at 30 m, the maximum

distance of our dataset. Our model is capable of detecting

the face, but only with a confidence score of 13%. It is

worth reminding that at 30 m, the size of the face in the

Fig. 7 mAP accuracy with IoU 0.5 in the UAV-UWS dataset versus its inference time in milliseconds using three different input sizes: 416, 608

and 1600
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resized image (608 � 608) is 2 9 5 px. Therefore, the

confidence score is low as the resolution of the face is small

and most of the face features have been lost.

6 Conclusions

Face detection is a widely studied task in research, pri-

marily focusing on achieving high accuracy. However,

most existing solutions neglect the crucial aspect of low

execution times, which are essential for real-time perfor-

mance and subsequent face identification processes.

Moreover, face detection from UAV imagery poses addi-

tional challenges due to factors such as face posing, angle

variations, camera inclination, and drone vibrations.

This manuscript introduces a novel CNN-based algo-

rithm, UWS-YOLO, specifically designed to address these

limitations. Our algorithm demonstrates high-accuracy face

detections with minimal inference times from UAV videos.

To evaluate the performance of UWS-YOLO, we con-

ducted comprehensive training and evaluation experiments,

comparing it against SOTA algorithms, including Retina-

Face. The evaluations were performed on both a standard

dataset (WIDER FACE) and a dataset collected by the

authors using a UAV. Empirical evaluation has been con-

ducted, and UWS-YOLO outperforms RetinaFace by a

significant margin, achieving an accuracy rate of 59.29%

compared to RetinaFace’s 27.43%. Notably, UWS-YOLO

surpasses RetinaFace’s capabilities by successfully

detecting faces even beyond a distance of 10 m. Further-

more, in terms of speed, UWS-YOLO exhibits exceptional

efficiency, performing 345% faster than RetinaFace.

The key advantages of UWS-YOLO can be summarized

as follows: superior speed, remarkable accuracy and the

ability to handle the complexities of face detection in UAV

operations. These findings position UWS-YOLO as a bal-

anced and highly suitable algorithm for face detection in

UAV applications. In summary, the presented research has

created a cutting-edge solution that surpasses previous

algorithms in terms of speed and accuracy, while also

addressing the unique challenges associated with face

detection from UAV imagery.
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