

UWS Academic Portal

Smartphone-based real-time object recognition architecture for portable and
constrained systems
Martinez-Alpiste, Ignacio; Golcarenarenji, Gelayol; Wang, Qi; Alcaraz-Calero, Jose Maria

Published in:
Journal of Real-Time Image Processing

DOI:
10.1007/s11554-021-01164-1

E-pub ahead of print: 01/09/2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Martinez-Alpiste, I., Golcarenarenji, G., Wang, Q., & Alcaraz-Calero, J. M. (2021). Smartphone-based real-time
object recognition architecture for portable and constrained systems. Journal of Real-Time Image Processing.
https://doi.org/10.1007/s11554-021-01164-1

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 24 Nov 2021

https://doi.org/10.1007/s11554-021-01164-1
https://myresearchspace.uws.ac.uk/portal/en/publications/smartphonebased-realtime-object-recognition-architecture-for-portable-and-constrained-systems(9a97e0c6-c145-40d7-9b33-98772be92f68).html
https://doi.org/10.1007/s11554-021-01164-1

Vol.:(0123456789)1 3

Journal of Real-Time Image Processing
https://doi.org/10.1007/s11554-021-01164-1

ORIGINAL RESEARCH PAPER

Smartphone‑based real‑time object recognition architecture
for portable and constrained systems

Ignacio Martinez‑Alpiste1 · Gelayol Golcarenarenji1 · Qi Wang1 · Jose Maria Alcaraz‑Calero1

Received: 2 January 2021 / Accepted: 16 August 2021
© The Author(s) 2021

Abstract
Machine learning algorithms based on convolutional neural networks (CNNs) have recently been explored in a myriad of
object detection applications. Nonetheless, many devices with limited computation resources and strict power consumption
constraints are not suitable to run such algorithms designed for high-performance computers. Hence, a novel smartphone-
based architecture intended for portable and constrained systems is designed and implemented to run CNN-based object
recognition in real time and with high efficiency. The system is designed and optimised by leveraging the integration of the
best of its kind from the state-of-the-art machine learning platforms including OpenCV, TensorFlow Lite, and Qualcomm
Snapdragon informed by empirical testing and evaluation of each candidate framework in a comparable scenario with a high
demanding neural network. The final system has been prototyped combining the strengths from these frameworks and led
to a new machine learning-based object recognition execution environment embedded in a smartphone with advantageous
performance compared with the previous frameworks.

Keywords Machine learning · Object recognition · Deep Learning platforms · CNN · YOLOv3 · Embedded systems

1 Introduction

Artificial Intelligence (AI) has gained momentum in recent
years in light of the huge potential in a wide range of appli-
cations, and there is an emerging trend to run machine learn-
ing in lightweight, embedded systems, such as smartphones
for high mobility, low cost, rapid deployment and other
benefits. Smartphone-based convolutional neural network
(CNN) capabilities are an enabling technology for a vari-
ety of machine learning empowered novel use cases, where
object recognition is required in outdoor areas, where there
are other limiting factors such as the need of freedom of
movement for the user, or the limited infrastructure and
coverage available in the geographical area. The computa-
tional power of smartphones has drastically increased in the
past few years and they are now comparable with desktop
computers available some years ago. Nevertheless, running
such CNN models on mobile devices is still challenging
owing to the limited computing power and energy available

[12]. Traditionally, CNN models run on high performance
computing servers due to hardware requirements and are
not available to operate on smartphones. To overcome these
issues, there is a vital need for a machine learning frame-
work suitable for smartphones to perform computing-inten-
sive computer vision tasks, such as object recognition.

Due to an emerging interest in the Android operating sys-
tem, some popular deep learning frameworks were ported to
this operating system including TensorFlow Mobile (TFM),
TensorFlow lite (TFL), OpenCV and Qualcomm Snap-
dragon. These platforms are destined to run the inference
task on mobile phones, suitable for scenarios, where there
is poor or no connectivity [34]. Each of these popular frame-
works has its own strengths and weaknesses, which should
be taken into account in selecting the best architecture for
object recognition. However, this is an open question yet to
be resolved in practical terms. Given the highly complicated
and heterogeneous models in these frameworks, an empirical
testing and evaluation based methodology would be the most
practical approach. An object recognition system is gener-
ally composed of three steps, namely, image preprocessing,
image recognition and image tracking. For each step, the
selection of the best mobile platform based on evaluation is
required to obtain the best system performance. A platform

 * Ignacio Martinez-Alpiste
 ignacio.alpiste@uws.ac.uk

1 University of the West of Scotland, Paisley, Scotland, UK

http://orcid.org/0000-0002-4142-514X
http://orcid.org/0000-0003-2259-5060
http://orcid.org/0000-0002-7764-9858
http://orcid.org/0000-0002-2654-7595
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-021-01164-1&domain=pdf

 Journal of Real-Time Image Processing

1 3

is typically evaluated based on criteria including accuracy,
speed, RAM usage and model size [21]. Image recognition
is a computational expensive process able to mark with a
bounding box the objective in an image; however, although
object tracking is much less computational expensive, it
needs the initial coordinates of the object to follow its move-
ments in the next frames. Thus, the combination of image
recognition and image tracking may create competitive sys-
tem by reducing computation.

CNN-based object detectors are divided into two main
categories: one-stage and two-stage detectors. Two-stage
detectors are computationally expensive as first the regions
of interest (ROI) are extracted and then the classification will
take place. This method is not suitable for real-time object
recognition on devices with power limitations. Meanwhile,
one-stage detectors such as You Only Look Once (YOLO)
[26] and Single Shot Detector (SSD) [17] achieve real-time
object recognition by concurrently selecting and classify-
ing the ROIs. These methods are faster at the cost of lower
accuracy. YOLOv3 is faster and more accurate than other
YOLO-based detectors and thus is explored in this study to,
first, analyse the popular machine learning platforms and
second to comprehensively test the proposed architecture.
Hence, the main contributions of this paper are summarised
as follows:

1. Practical deployment and testing of popular machine
learning frameworks, comprehensive evaluation and
analysis of popular mobile platforms based on criteria
affecting the system performance, and contributing to
an empirical methodology in selecting the most suitable
technologies in machine learning based object recogni-
tion tasks.

2. Design and implementation of a novel object recognition
architecture informed by the empirical analysis of the
popular machine learning frameworks under study in a
smartphone-based operational environment, leading to
a highly optimised system of practical use.

3. New machine learning benchmark for object recogni-
tion systems in a smartphone platform, providing new
insights into the performance of such systems.

4. Discussions regarding the limitations of the proposed
architecture on running object recognition systems on
portable devices.

The rest of the paper is structured as follows: Sect. 2 reviews
popular object recognition algorithms and related work, and
Sect. 3 further provides a detailed analysis and assessment
of each of these individual machine learning frameworks.
Section 4 experimentally tests and evaluates the previous
analysis realised for each deployed platform. Furthermore,
it presents the design and implementation of the proposed
architecture. empirical results of the proposed architecture.

Section 5 tests and compares the system. Finally, Sect. 6
concludes the paper.

2 Related work

2.1 Object recognition

As mentioned, object recognition algorithms based on CNN,
can be classified into two main categories: two-stage and
one-stage detectors. In two-stage detectors, such as Fast
R-CNN [9], Faster R-CNN [28] , and R-FCN [8], the region
proposal is generated in the first stage. In the second stage,
the object classification and the regression of bounding-box
(bbox) will be conducted. These methods are high in accu-
racy but slow in recognition. In one-stage detectors, such as
SSD and YOLO, the object classification and bbox regres-
sion are performed simultaneously without a region proposal
stage. These methods are fast in recognition but have low
accuracy. YOLOv3 has a fast speed in multiple object rec-
ognition in a single inference. Furthermore, the low accuracy
of YOLO and YOLOv2 [25, 26] is solved using a multi-stage
recognition method. YOLOv3 is used when the system has
enough computational resources. Tiny-YOLOv3 is for con-
strained environments and less accurate than YOLOv3 [2,
27].

2.2 Analysis of previous smartphone object
recognition work

This subsection provides an overview of various use cases in
the literature related to object recognition on Android mobile
devices. There is a collection of existing work regarding
popular machine learning (ML) platforms and machine-
learning object recognition on mobile devices. Table 1 pre-
sents and compares the published results of using different
CNNs on smartphones in relation to the study in this paper.
The values represented in Table 1 are composed by accu-
racy, speed and model size. If a studied publication provides
multiple results, these will be summarised between brack-
ets. In [12], Ignatov et al. presented a review of the current
state of deep learning and described the popular AI frame-
works and the limitations of running AI including object
recognition on smartphones that were considered for the
implementation of our novel architecture. In [4], an archi-
tecture was presented for Ultra-low Power Binary-Weight
CNN Acceleration. Although the work stated that by using
binary-weights during training, a comparable classification
could be achieved with non-binary weights, this can still
reduce the accuracy. Moreover, an Android benchmark set
was provided in [22] on OpenGL platform for low-power
mobile GPUs. As stated by the authors, this android bench-
mark, however, is not ideal for GPU benchmarking and does

Journal of Real-Time Image Processing

1 3

not measure power efficiency. In addition, Alpiste et al. [20]
presented benchmarking results regarding the performance
of OpenCV as a popular computer vision and machine learn-
ing platform in two different studies using YOLOv3 and
Tiny-YOLOv3 algorithms embedded on a smartphone. In
these studies, however, the authors did not use other popu-
lar machine learning platforms including TFM, TFL, and
Snapdragon to achieve close to real-time speed for afore-
mentioned algorithms. As shown in Table 1, the studies in
[7, 14, 18, 29, 30, 33, 35], and [15] used ML platforms, such
as TFL, Google API, Snapdragon and Caffe and computer
vision platforms such as OpenCV. Others deploy OpenCV,
which combines machine learning with computer vision.
These studies, however, did not provide all the necessary
metrics including model size to make the comparisons [21].
In [23], a marker tracker was designed using a light-weight
YOLO-based algorithm. Although the work achieved real-
time speed (20 fps) using this algorithm, the images under
study (markers) are easily detectable. Hence, the obtained
accuracy (96%) is expected.

In summary, none of the above studies has covered a thor-
ough analysis of the popular machine learning frameworks
to provide a novel architecture for object recognition systems
in constrained environments. For the first time, this paper

provides a novel architecture for object recognition on con-
strained environments considering all the metrics that affect
the system performance.

3 Analysis of deep learning mobile
platforms

This section analyses the interesting different popular
machine learning frameworks deployed on portable plat-
forms with a focus on smartphones. The investigation
includes four open-source machine learning libraries includ-
ing OpenCV, TFM, TensorFlow Lite and Qualcomm Neural
Processing Software Development Kit (SDK). Other plat-
forms such as Keras were not considered, because it cre-
ates an abstraction layer over TensorFlow increasing the
overhead and losing the control over complex architectures.
For instance, Google API was not considered, because it is
prepared with a set of ML models already included in Ten-
sorFlow, making Google API easy-to-use for non experts
developers. Due to the focus of the study being on the
object recognition process and this process being the most
resource-intensive task, state-of-the-art mature and consoli-
dated ML platforms were selected.

Table 1 Comparison of object recognition use cases on smartphones in literature

NG not given, TP this paper, italic lack of information, bold our approach

Aspects

Ref Objective Exec Environment Algorithm Platform Accuracy Speed (inference time) Model size

[20] Common Android YOLOV3/ DJI+OpenCV 55.3/ [0.08/ 248/
Objects Tiny-YOLOv3 33.1% 1.37] fps 35.4 MB

SSD/ DJI + OpenCV/ 41.2/
[21] Common Android YOLOv3/ DJI+Tensorflow 55.3/ [0.06, 1] fps [23, 237] MB

Objects Tiny-YOLOv3 33.1%
[30] Face Android Customed CNN Google API “small error” NG NG
[29] Face Smartphone Alexnet& SVM RenderScript [88%, 96%] [0.03, 0.17] fps NG
[35] Human Smartphone Googlenet/ Keras/ 97.32% NG NG

Mobilenet + SSD Caffe
[33] Art Sculpture Ipad Alexnet Keras/ [57.4, 59.3]% [1.01, 3.4] fps NG

Googlenet Caffe
[18] Road damage Smartphone Inception V2/ NG Above 75% 0.66 fps NG

Mobilenet + SSD
[7] Pedestrian Tablet/Smartphone AdaBoost Qualcomm NG [8, 20] fps NG
[13] Food Android HOG&SVM OpenCV/VLFEAT 79.2% NG NG
[14] 3D asset Smartphone SSD Tensorflow lite 75% NG 22 MB
[15] Vehicle Android Squeezenet Tensorflow 76.7% NG 8 MB
[11] Gesture Android 3L MLP Matlab 95% NG NG
[23] Marker Smartphone LightDenseYOLO Snapdragon 96% 20 fps NG

OpenCV/
TP Common Android Tiny-YOLOv3 Tensorflow Lite/ 33.1% 17.7 fps 33.8 MB

Objects Snapdragon COCO DS

 Journal of Real-Time Image Processing

1 3

Figure 1 illustrates the comprehensive architecture of
the machine learning libraries analysed and compared in
this study. To test the proposed architecture shown in Fig. 1,
we employ a state-of-the-art CNN YOLOv3. The standard
version of YOLOv3 destined for non-constrained environ-
ments is utilised. Based on the architecture, the YOLOv3
model is in a format of a configuration file and a weight
file [2]. These files are then integrated and converted to a
format appropriate for the destined framework. To realise
the conversion between different platform formats, Keras,
which is a machine learning platform, is utilised. YOLOv3
is considered a high-demanding CNN in constrained envi-
ronments. The architecture of YOLOv3 comprises 106 fully
convolutional layers. This demands very high computational
power for hardware. The main intention of testing this highly
demanding neural network (YOLOv3) in our portable envi-
ronment is to stress the system and evaluate the performance
of the frameworks in high-demanding situations. If we are
able to obtain acceptable results with the standard version,
we will achieve greater results with lighter versions of CNN
models in terms of inference time.

In the following subsections, the deployment of different
platforms is thoroughly explained according to Fig. 1.

3.1 OpenCV

Open Source Computer Vision Library (OpenCV) is an
open-source framework for image and video analysis [6].
Although this framework has been deployed to focus on

image processing, it also provides functions for real-time
machine learning. OpenCV has the ability to read the neural
network configuration and the weight file directly without
a need for a converter to load the CNN model into memory
in an appropriate format. Meanwhile, OpenCV is limited in
terms of compatibility with the processing units of smart-
phones. The platform is just able to run the neural network
models using the Central Processing Unit (CPU), missing
the opportunity to take advantage of high processing power
of the Graphic Processing Unit (GPU) and the Digital Signal
Processor (DSP).

As mentioned, due to being very mature and powerful,
OpenCV is well implemented and adopted all around the
world by developers. Its main focus is on real-time image
processing, which makes it effective and fast for image pre-
processing of the recognition process.

3.2 TensorFlow mobile

TensorFlow Mobile is a machine learning platform devel-
oped by Google. TFM aims to support different modern
computing devices from smartphones [1] to embedded
devices, such as Raspberry Pi and mobile applications [3].
TFM was derived from TensorFlow. Almost all the opera-
tions in the standard TensorFlow are supported by the TFM
library. On account of its general implementation to be appli-
cable in a wide variety of architectures, TFM has a drawback
in performance when it comes to constrained environments.
This limitation is not only related to computation power

Fig. 1 State of the art technolo-
gies for object recognition and
its deployment in smartphones

Android Neural Network Runtime

YOLOv3
Configuration

YOLOv3
Weights

TensorFlow Mobile
Converter

TensorFlow Mobile
Library

TensorFlow Lite
Library

OpenCV
Library

TensorFlow Lite
Converter

Qualcomm
API

Qualcomm Neural
Processing SDK

KERAS

DLC Model
Converter

GPU
Delegate

TF Lite DelegateAndroid NN API

Hardware Acceleration

Qualcomm Snapdragon

Pre-trained Models

Processors API

Others Processors API

Android Smartphone

Journal of Real-Time Image Processing

1 3

and memory but also in power consumption. This platform
is now deprecated and substituted by TFL which mainly
focuses on systems with low computational resources. Nev-
ertheless, TFM is still in use in applications that have not
been updated.

Unlike OpenCV, TFM needs a converter to transform
the neural network configuration file and its weights into
a protobuf file (.pb), which is fully compatible with this
library. Using the protobuf file, TensorFlow can apply dif-
ferent optimisation techniques such as quantisation to further
improve the speed of execution. Although this type of model
optimisation may be beneficial for limited environments, it
may compromise the accuracy. Similar to OpenCV, TFM
merely runs the trained model on a CPU. This increases
the portability between processors. This, however, causes
the platform not to be easily deployable on constrained
environments.

3.3 TensorFlow lite

TensorFlow Lite is the light version of TFM for constrained
environments reducing latency and increasing efficiency. In
addition, released by Google, TFL, is a machine learning
framework for running TensorFlow models on smartphones,
embedded systems and Internet of Things (IoT) devices with
low latency and small battery size [32]. Comparable to TFM,
TFL needs a converter to alter the neural network configura-
tion file and its weights into a flatbuffer model (.tflite).

Meanwhile, TFL is more versatile than TFM, being able
to execute machine learning algorithms on all on-board pro-
cessors. Identical to TFM and OpenCV, TensorFlow Lite can
execute the neural network on a CPU in a straightforward
manner, although TFL gives faster inference time.

In addition, TFL has the ability to delegate part or all
of the execution of an algorithm to mobile GPU. This del-
egation is through two key methods: GPU delegation [31]
and android neural network API (NNAPI) [5]. In GPU del-
egation technique, TFL defines an abstraction layer for the
programmer to communicate with the GPU. This delegation
assists to obtain a better performance in terms of inference
time and resource consumption. Although, being compatible
with IOS smartphones and multitude of Android devices,
several models and operations are not supported. This limits
the developers’ ability to execute different types of neural
networks on this platform. For instance, YOLOv3 operations
are not supported on this platform. However, operations for
Inception and Mobilenet models are supported and used in
TFL tutorials.

As already stated, another method of executing the CNN
on GPU is through NNAPI. An interface has been imple-
mented for TFL to communicate with the Android Neural
Network API. NNAPI intends to use hardware accelerators
for machine learning frameworks. To realise this, vendors

must provide drivers for their own processors to utilise
the API and make it compatible with on-device proces-
sors including CPU, GPU and DSP. NNAPI is then able to
apply the neural network operations from TFL to mobile
device hardware. Nonetheless, similar to the GPU Delega-
tion technique, there are limitations when running YOLOv3
operations.

3.4 Qualcomm neural network processing SDK

The Snapdragon Neural Processing Engine SDK (SNPE) is
a Qualcomm Snapdragon software accelerated at runtime
to run deep neural networks [24]. Our system has integrated
a Qualcomm Snapdragon processor to be compatible with
SNPE. As Fig. 1 displays, SNPE needs a model formatted
into a Deep Learning Container (DLC) file; therefore, a con-
verter is employed. This converter supplied by Qualcomm
demands a protobuf model as an input; thus, the system also
needs the same converter as TFM.

This platform is fully compatible with its own drivers
providing this ability to directly manipulate onboard pro-
cessors (CPU, GPU and DSP). This will result in improved
efficiency. There are two main drawbacks of deploying
this SDK. First, unlike previous platforms, compatibility
is decreased due to not all smartphones are equipped with
Qualcomm Snapdragon. Second, the deployment of SNPE is
more complicated because of low-level features the develop-
ers should deal with, forcing them to have a deeper under-
standing of the hardware.

4 The proposed system

This section describes the proposed system deployed on a
smartphone for object recognition. First, a comprehensive
evaluation was performed to obtain the best frameworks for
our proposed object recognition system. Second, the system
is established based on the results from Sect. 4.1, and a
concurrent object recognition pipeline is defined.

4.1 Empirical platform evaluation criteria
for system design

In this subsection, a complete evaluation is done to select
the best frameworks for our system design. Three steps are
involved in an object recognition system including image
preprocessing, image recognition and image tracking. To
achieve the best performance of the object recognition sys-
tem, the best platform should be selected for each aforemen-
tioned step based on the metrics affecting the system per-
formance. To this end, this section provides a step-by-step
approach to choose the best platform for each step and obtain
the most efficient and fast machine learning recognition

 Journal of Real-Time Image Processing

1 3

architecture after deploying and implementing each platform
in the same environment.

4.2 Preprocessing

Preprocessing is a fundamental step when the recognition
pipeline is running. It transforms raw frames (YUV) into
a proper format for the input of the neural network. This
step includes image scaling, image normalisation and colour
space transformation. Image scaling is necessary to reduce
the input size from 1280 × 720 to 416 × 416 to maintain a
trade-off between speed and accuracy and achieve real-time
detection for critical applications. Similar to the YOLO’s
authors, in this manuscript we have selected an input size of
416 × 416 to provide easier result comparison with the plat-
forms of other researchers. Image normalisation is another
stage to scale pixel values from 0 to 255 to a range of 0–1.
Finally, a colour space transformation is needed in some
cases. OpenCV loads the frame in BGR. Hence, a colour
space transformation to RGB is needed. TFL and SNPE
do not provide this step, thereby relying on Android librar-
ies and lasting 56.3 ms. OpenCV, however, produces great
results because of being powerful and mature in image pro-
cessing with 9.3 ms [6].

4.3 Model size

The size of the models results in memory usage. Snapdragon
and TFL approaches use serialisation to convert the con-
figuration file and a weight file of the CNN into a readable
format. This leads to a better result in terms of model size.
In our study, the format of the flatbuffer model is suitable for
TensorFlow Lite. Meanwhile, the double conversion from
Protobuf to DLC in SNPE decreases the model size. Table 2
shows the size of the models for YOLOv3 for different for-
mats related to each machine learning platform.

4.4 Loading time

Smaller models do not necessarily mean the model will be
loaded faster it into memory. The lowest model to be loaded
is the DLC from Qualcomm Snapdragon. The next comes
the OpenCV, which loads two files separately in 456 ms
which is an acceptable result. Finally, the interpreter of the
flatbuffer format is the fastest among all. Table 2 shows the
average loading time of each model based on platform and
format.

Nevertheless, the average loading time is not a determi-
nant key factor. This is due to the fact that the models are just
loaded once into memory at the beginning of the process.

4.5 Accuracy

Accuracy does not depend on the machine learning plat-
form, where the neural network is executed. It depends
intrinsically on the algorithm itself and the received training.
Hence, the three platforms perform equally in terms of accu-
racy. The only way to improve the accuracy and modify the
speed and the model size is through the model optimisation.

4.6 Speed

In constrained environments, speed is the key metric to be
influenced. Inference time is the time taken from when a
frame starts being processed until it obtains the results in
terms of object recognition. Table 2 shows the inference time
of recognising objects for each frame based on given plat-
forms. OpenCV is the slowest one. Similarly, TFL obtained
the same results. Snapdragon Library had the best result
with almost two frames per second. In addition, Fig. 2 shows
the cumulative average over 500 frames for each platform.
As TFL and OpenCV are executed in CPU, the first itera-
tions of the processes require more time due to the access
to memory. Over time, these values achieve a controlled
and stable execution. As observed, the inference time taken
for TFL and OpenCV increases gradually. This means that

Table 2 Empirical factor comparison for each Machine Learning
Platform

Factor OpenCV TF Lite SNPE

Preprocessing 9.3 ms 56.3 ms 56.3 ms
Model size 237.08 MB 236.66 MB 212.41 MB
Loading time 456 ms 271 ms 2618 ms
Accuracy Algorithm dependent (not platform)
Speed (Inf. Time) 5203ms 4379 ms 595 ms
Average RAM 633 MB 263 MB 707 MB
Maximum RAM 1.5 GB 1 GB 1.1 GB
Battery 3280 mAh 3280 mAh 3280 mAh
Temperature 46 °C 46 °C 46 °C
Tracker Sequential Concurrent Not Provided

0 50 100 150 200 250 300 350 400 450 500

500
1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000
5,500
6,000

Frames

In
fe
re
nc
e
T
im

e
(m

s)

OpenCV
TensorFlow Lite
Snapdragon

Fig. 2 Accumulative average of the inference time from the execution
of YOLOv3 for each Machine Learning Platform

Journal of Real-Time Image Processing

1 3

both platforms suffer a saturation when the frames are being
processed by the neural network. In contrast, Snapdragon
remains stable for each frame.

4.7 Average RAM usage

Highly compute-intensive tasks such as object recognition
and image processing may lead to higher average RAM
usage. This subsection evaluates the utilised RAM over an
hour during the object recognition process. Table 2 shows
that TFL, Snapdragon and OpenCV have the RAM usage
of 236 MB, 707 MB and 633 MB, respectively. Thus, TFL
performs the best.

4.8 Maximum RAM usage

At some points, RAM usage may hit a peak over the recogni-
tion process causing anomalies in the system. Table 2 also
shows that TFL and Snapdragon perform almost equally and
OpenCV uses 0.5 GB more memory when reaches maxi-
mum. These average and maximum RAM usage are not sig-
nificant in a smartphone system when the smartphone has
more than 4GB of memory.

4.9 Battery

In constrained environments, the battery may drain rapidly
when executing compute-intensive algorithms. In our sys-
tem, the battery consumption was very similar for all the
concerned platforms due to the most resource-intensive task
being the screen brightness while playing the videos, which
is a compulsory process for all. In our system, 3280 mAh
battery was drained for all the platforms after an hour of
CNN execution.

4.10 Temperature

A compute-intensive process affects the temperature stabi-
lisation, especially in constrained environments. The high
temperature in a device can decrease the performance to a
large extent in machine learning processes. In our use case,
temperature increased until reached a plateau of 46–47°C
for all the platforms.

4.11 Tracker

As defined in the speed subsection, real-time speed may not
be achievable by deep CNN models such as YOLOv3 on
constrained systems; therefore, a tracker as an external aid is
needed to create a visual perception of real time for the final
user. Among the machine learning platforms studied in this
paper, OpenCV and TFL are the only platforms that provide
trackers. As a result, Snapdragon was not evaluated in this

section. The authors of [21] provided two reasons in favour
of TFL when it comes to tracking. First of all, TensorFlow is
faster than OpenCV when tracking an object. Second, Ten-
sorFlow has the ability to simultaneously execute the tracker
to follow multiple recognised objects in parallel using dif-
ferent cores. These reasons make TFL the best choice when
tracking multiple objects on the screen. For detection, as
we implement the algorithm in Snapdragon, the decision of
using more than one core relies on the API.

4.12 Design of the system

In this subsection, we propose a new system based on inte-
gration of the best of its kind component frameworks that
have been empirically justified. The frameworks chosen
to be integrated in our proposed system correspond to the
results presented in Sect. 4.1. Our proposed system follows
the three standard processes: image preprocessing, object
recognition and object tracking. For the preprocessing step,
OpenCV was selected as the most appropriate platform due
to its strength in image processing. Regarding the recogni-
tion process, the Snapdragon framework was chosen due
to its efficient support of GPU acceleration. Finally, the
tracking process was carried out using the TFL platform
for its speed and capability in tracking multiple objects
simultaneously.

These three processes are executed in two concurrent
threads, a recognition thread which performs the preproc-
esing and the image recognition process, and a second thread
which leads the tracking process. Figure 3 depicts the work-
flow, since the video is decoded until the frames are shown
on the screen with its correspondent recognition. The afore-
mentioned workflow are explained in the following steps.

 1. The proposed approach loads the object recognition
model on the correspondent processor. As the chosen
framework is SNPE, the model is loaded on the GPU
to reduce the inference time.

PostprocessingDetectionPreprocesing

Video

Decoder

Frame

Frame

Frame

Frame

Frame

Frame

Frame

R
E

C
O

G
N

IT
IO

N

T
H

R
E

A
D

T
R

A
C

K
IN

G

T
H

R
E

A
D

Scheduler

Colour Space

Rescale

Normalisation

GPU
Qualcomm
Snapdragon

Threshold

Database
* Coordinates
* Coefficients
* Class

Tracker

SCREEN

2

3

4

6

5

7
8

9

10

11

Load OD

Model

1

Fig. 3 Design of the proposed system. Recognition Thread includes
preprocessing (OpenCV) and recognition (Snapdragon). Tracking
Thread is led by TensorFlow platform

 Journal of Real-Time Image Processing

1 3

 2. The video is decoded and each frame is stored in a first
in first out (FIFO) queue for further processing.

 3. The Scheduler is a process that manages the frames
by assigning tasks to them. In this work, this process
is mandatory to achieve real-time detection from the
video feed. The frames extracted from the FIFO queue
and delivered to to the recognition or tracking Threads
for processing when any of them are idle. However,
if both threads are currently occupied, the frame is
marked as non-processed. This process will release
every frame as soon as possible to achieve real-time
processing. The Scheduler allows the neural network
designer to abstract the design of the CNN from the
implementation in the system by delivering the lat-
est frame captured by the camera. If the CNN is com-
putationally expensive, the Scheduler will adapt to a
lower speed by providing the latest frame, and thus,
the results are reliable in time. In contrast, if the CNN
execution is faster than real time, the Scheduler will
provide all available frames without discarding any.

 4. The Scheduler displays all the frames that are sent on
the screen to the final user.

 5. The Tracker thread receives the frames from the Sched-
uler when idle.

 6. The Recognition thread receives the frames from the
Scheduler when idle. First, OpenCV preprocesses the
frames. This action is divided into three main opera-
tions, namely, colour space transformation, compres-
sion and re-escalation of the frame, and image nor-
malisation. At this point, the frame is ready for the
recognition process.

 7. SNPE executes the CNN and passes forward the pre-
processed frame. This is the most time-consuming task
of the object recognition pipeline.

 8. The result is obtained by the execution of the CNN.
The coordinates of the detected object, the class of
each object and the confidence score are extracted from
the results.

 9. The previous results are stored in the Tracker database
along with the frame.

 10. Each frame received by the Tracker will consult the
database to obtain the values for tracking. The tracker
compares the current frame with the frame stored in
the database, and the new location of the objects is
updated in the database. If the Tracker loses an object,
the entry of the database referring to that particular
object will be deleted.

 11. The Tracker updates the position of the recognised
object on the screen.

This system workflow is implemented and tested in Sect. 5
for each ML platform and the proposed system.

5 Experimental results

5.1 Testbed

The deployed testbed was executed on a “Xiaomi Black-
shark” smartphone with Qualcomm “Snapdragon 845”
processor with 8 cores at 2.8 GHz and 8 GB of RAM
memory. It has an integrated multilayer liquid-cooling to
reduce the processor temperature. As “Snapdragon 845”
is a popular processor choice, it was selected to study the
proposed architecture. Table 3 summarises the specs of
the smartphone and the version of the machine learn-
ing platform deployed. The machine learning algorithm
deployed for testing is YOLOv3. Moreover, the results
were obtained from the thread related to object recogni-
tion process which is specialised for recognition of small
objects. This layer is more computationally expensive
than other layers that detect bigger objects. YOLOv3 was
trained with COCO data set with an obtained accuracy
of 55.3 mAP. The COCO data set [16] is a very wide and
complex data set for comparison. It comprises 80 object
categories with more than 1.5 million object instances. It
also has over 300k images in different environments and
scenarios. In this section, we deploy standard YOLOv3
due to its computational expensive resources needed to
be executed. At these tests, we want to stress the systems
and demand the maximum performance of each approach
to be easily comparable.

Table 3 Smartphone specs and machine learning platforms version

Smartphone specs
Processor Snapdragon 845
Instruction ARMv8-A
CPU 4× 2.8 GHz Kryo 385, 4 × 1.8 GHz Kryo
CPU Frec. 2800 MHz
GPU Qualcomm Adreno 630, 710 MHz
GPU Frec. 710 MHz
L1 Cache 32 kB + 32 kB
L2 Cache 1536 kB
L3 Cache 2048 kB
RAM 8 GB, 1866 MHz
Storage 256 GB
Android Version 9
Machine learning platforms version
OpenCV 4.0.0
TensorFlow 2.0.0
SNPE 1.26.0

Journal of Real-Time Image Processing

1 3

5.2 Approach evaluation

To evaluate the performance of the proposed system, we
carried out extensive experiments. The proposed system
was compared with three other alternative approaches:
Snapdragon, TFL and OpenCV. These three alternative
approaches adopted their own built-in processes for preproc-
essing, recognition and tracking. The only exception process
is tracking in Snapdragon. As Snapdragon has not provided
any tracking algorithms, the TensorFlow tracker was adopted
in the Snapdragon pipeline to allow the comparison across
the pipelines under study.

In the experiments, videos were recorded at 24 fps, and
then fed into the proposed system. The videos were recorded
at 24 fps, since it is a standard in every smartphone camera
and it allows a good balance for viewing experience and
real-time processing in our platform. An experiment was
conducted to count how many frames were processed by the
recognition process and the tracking process. It is noted that
the preprocessing process is included as a part of the recog-
nition process due to the fact that preprocessing will always
be executed just before the recognition process. The frames
that are not handled are called “dropped” frames. These dis-
carded frames correspond to the frames that are not tracked
or recognised. In addition, the recognised frames were also
processed by the Tracker, and thus the sum of tracked frames
and dropped frames must be 24 in each second of time.

Figures 4, 5 and 6 show the number of frames managed
for 30 s. In total, 720 frames have been considered. Fig-
ure 4 exhibits the number of frames recognised per second.
As it can be observed, TFL and OpenCV are just able to
detect one frame every 3–4 s. In contrast, Snapdragon and
our approach achieve between 1 and 2 frames per second.
Nevertheless, our approach detects more frames per seconds,
because it has a lower preprocessing rate.

Figure 5 illustrates the experimental results regard-
ing the tracked frames. As explained in Sect. 3, the best

tracking process was realised by TensorFlow, and due to all
the approaches with the exception of OpenCV executes this
Tracker, they obtain good results. Nonetheless, there is an
overload when executing TFL and OpenCV systems leading
to a decrease in the performance in both platforms. The same
trend to decrease in the performance is depicted in Fig. 6,
which exposes the dropped frames. Over each second, TFL
and OpenCV increase the number of frames dropped over
the time spent.

Although the previous figures show the number of frames
handled for 30 s, Fig. 7 illustrates the final number of frames
tested by the different systems for recognition, tracking and
being dropped. Whereas the recognition and tracking pro-
cesses should take as many frames as possible, the dropped
frames should be kept as minimal as possible. In conclu-
sion, the worst-performing object recognition system was
OpenCV, which discarded more frames than tracked in con-
trast to our approach, which was the best-performing object
recognition system in this group.

Figure 8 depicts a stacked bar graph of the four differ-
ent object recognition pipelines (preprocessing, recognition
and tracking). Each bar in the chart represents one object
recognition pipeline.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

1

2

3

Time

F
P
S

Our Approach Snapdragon TensorFlow Lite OpenCV

Fig. 4 Comparative of frames recognised per second in the different
Machine Learning Platforms

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0
2
4
6
8
10
12
14
16
18
20
22
24

Time

F
P
S

Our Approach Snapdragon TensorFlow Lite OpenCV

Fig. 5 Comparative of frames tracked per second in the different
Machine Learning Platforms

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0
2
4
6
8
10
12
14
16
18
20
22
24

Time

F
P
S

Our Approach Snapdragon TensorFlow Lite OpenCV

Fig. 6 Comparative of frames dropped per second in the different
Machine Learning Platforms

 Journal of Real-Time Image Processing

1 3

The results obtained by OpenCV and TensorFlow pipe-
lines demonstrated that there is still much room for enhance-
ment to achieve smoother recognition even on a latest-gen-
eration smartphone. Nevertheless, the limitations of these
frameworks are exposed when working on Snapdragon

GPUs with a process time of lower than one frame per sec-
ond. Our integrated approach takes the best of each state of
the art platform, thereby being 88% faster than Open- CV,
86% faster than TFL and 7% faster than Snapdragon.

Although the accuracy does not depend on the ML plat-
form, we present a screenshot (Fig. 9) taken from the pro-
posed system. This image was taken at the University of
the West of Scotland premises and after preprocessing in
the system, our system was able to recognise the objects
including most of the cars parked and one person walking
at high accuracy.

In terms of parameters that affect the performance of
constrained environments, the battery consumption is very
similar to the state-of-the-art ML platforms. While our
approach has a battery drainage of 680 mAh, the others have
720 mAh. In terms of temperature, our approach achieves a
plateau of 43 degrees, three degrees less than standard ML
platforms.

5.3 Evaluation of the approach in a real scenario

As stated previously, we have deployed and tested stand-
ard YOLOv3 in the scenario to stress the system. In this
subsection, we will focus on executing our approach with
an algorithm designed for constrained environments, such
as Tiny-YOLOv3. This model was trained with the popu-
lar COCO data set. While computationally expensive algo-
rithms (Faster R-CNN, YOLOv3, SSD) achieve more than
45% of accuracy, Tiny-YOLOv3 obtained an accuracy of
33.1 mAP with a model size of only 33.8 MB which is more
suitable for constrained environments. Although the accu-
racy is lower in comparison to computationally expensive
algorithms, this model is able to detect big/medium size
objects with good accuracy and can still be used for use
cases in this regard in constrained environments which is not
possible when using computationally expensive algorithms;
It, however, loses accuracy for small size objects.

Fig. 7 Representation of the frames recognised, tracked and dropped
for each machine learning platforms for 30 s

662 709
.8

445
8.5

536
4.1

0

4500

5000

5500

Ou
r A

ppr
oac

h

Sna
pdr

ago
n

Ten
sor

Flo
w Lit

e

Op
enC

V0
50

100
150
200
250
300
350
400
450
500
550
600
650
700

M
ill
is
ec
on

ds

Preprocessing Tracking Recognition

Fig. 8 Comparison of each system with the different three processes
stacked

Fig. 9 Screenshot from the smartphone while executing the proposed
approach. It recognised the cars parked and one person walking

Journal of Real-Time Image Processing

1 3

Figure 10 shows the number of frames per second (out of
24) treated by each process. As apparent in the figure, the
Tracker performs at an average of 22.2 fps, leading to an
average of 1.8 dropped fps. These results provide a percep-
tion of real time for the final user. Regarding the recognition,
Tiny-YOLOv3 achieves 17.3 fps. The recognition time starts
when the frame is read from the queue in the recognition
thread and stops when the results are shown on the screen
including preprocessing, CNN execution and postprocessing
stages. Nevertheless, if we measure the inference time of
the CNN model running on the system, we obtain an aver-
age of 47.5 ms per frame (i.e., 21 fps). Our approach with
Tiny-YOLO just achieves a battery drainage of 520 mAh and
reaches a plateau of 38 degrees, which is 8 degrees lower
than standard ML platform approaches. In the following sub-
section (5.4), different bottlenecks are discussed to further
improve the system.

5.4 Discussion

This subsection further analyses the time breakdown of dif-
ferent stages and the bottleneck in the system focusing on
our approach. As shown in Fig. 8, each stage (preprocess-
ing, recognition and tracking) can be evaluated separately
in the whole object recognition pipeline. For a real scenario
as described in Sect. 5.3, the most time-consuming stage is
the recognition process with 47.5ms per frame, representing
the 83.92% of the whole object recognition pipeline. For
preprocesing, OpenCV took 9.1 ms (15.26% of the whole
system) being the fastest in the whole object recognition sys-
tem. Finally, the least time-consuming stage is the tracking.
The tracking process merely took an average time of 21ms
per frame, although we did not discuss this process as the

implementation of the Tracker did not cause any delay in the
proposed solution due to thread parallelism. Any overhead
related to internal processes of the application or the operat-
ing system was not considered to calculate the duration of
each stage. Since the videos were recorded at 24 fps, when
it comes to an ideal system, it took 41.6ms for each frame
to be processed before being discarded by the new frame.
Although our approach is able to preprocess in real time
without losing any frames, the bottleneck lies in the rec-
ognition process. The recognition pipeline lasted 56.6ms;
hence, our approach was able to process 17.7 frames out of
24 frames.

Figure 11 depicts a comparison between our approach
and an ideal framework that is able to achieve real-time
recognition for each frame and thus does not require any
tracking stage. The ideal framework presented in Fig. 11
was obtained by extrapolating the same percentages of our
system executing Tiny-YOLOv3 on the ideal system. To
achieve this ideal system, it is expected that the time for the
recognition process to be reduced in future GPU hardware
developments. Nevertheless, 9.1 ms spent by preprocessing
just leaves 32.5 ms for the CNN to recognise objects. This
means that not only the time for recognition process should
be reduced, but also the preprocessing should be decreased
to allow the system to have more time for object recognition.
Based on this manuscript, our approach is able to reduce the
inference time by 99.1% in comparison to the basic imple-
mentation. However, there is still an extra 26% to reduce
to achieve 24 fps in a constrained environment. Several
approaches could be taken to further reduce the inference
time [19], such as quantisation techniques or faster feature

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

12

14

16

18

20

22

24

Time

F
P
S

Recognised Tracked Dropped

Fig. 10 Frames processed by Tiny-YOLOv3 over 30 s at 24 fps

Ideal System Our Approach
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

41.6

56.6

6.64
9.1

M
ill
is
ec
on

ds

Preprocessing Recognition

Fig. 11 Comparison of our approach with a ideal model that achieves
real-time recognition per frame

 Journal of Real-Time Image Processing

1 3

extraction methods [10]. Nevertheless, they may reduce the
accuracy. Other techniques such as management of multiple
GPU cores may lead to a reduction in the inference time and
it may not affect the accuracy. However, this implementa-
tion is time-consuming as it is not currently allowed by the
machine learning platforms.

6 Concluding remarks

A novel architecture has been proposed for machine learn-
ing empowered object recognition in smartphone platforms,
which are typically resource constrained. The proposed
system takes advantage of the best of its kind in the three
building blocks from a group of popular machine learn-
ing frameworks, based on an empirical evaluation. Conse-
quently, the system outperformed the alternative approaches
significantly. The methodology of object recognition system
was deployed with high accuracy and efficiency. The experi-
ment results have showed close-to-real-time performance of
17.7 fps speed at 33.1 mAP of accuracy and with a 33.8 MB
model size. The present study revealed that the proposed
system has the potential to be further improved towards
per-frame real-time object recognition on mobile devices.
Such a capability is expected to contribute to the wide use
of real-time object recognition applications that require a
highly mobile platform.

Acknowledgements This work was in part funded by the EU Horizon
2020 5G-PPP 5G-INDUCE project (“Open cooperative 5G experimen-
tation platforms for the industrial sector NetApps”) with Grant number
H2020-ICT-2020-2/101016941. The authors would like to thank all the
partners in this project for their support.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.:

Tensorflow: Large-scale machine learning on heterogeneous dis-
tributed systems. arXiv: 1603. 04467 (2016)

 2. Alexey, A.B.: Darknet. https:// github. com/ Alexe yAB. Accessed
18 Feb 2019

 3. Alsing, O.: Mobile object detection using TensorFlow Lite and
transfer learning. Degree Project Comput. Sci. Eng. (2018)

 4. Andri, R., Cavigelli, L., Rossi, D., Benini, L., Yoda, N.N.: An
architecture for ultralow power binary-weight CNN acceleration.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(1),
48–60 (2018). https:// doi. org/ 10. 1109/ TCAD. 2017. 26821 38

 5. Android: the android neural networks API: https:// devel oper. andro
id. com/ ndk/ guides/ neura lnetw orks. Accessed 20 June 2020

 6. Bradski, G.: The OpenCV library. Dr. Dobb's Journal of Software
Tools (2000)

 7. Costea, A.D., Vesa, A.V., Nedevschi, S.: Fast pedestrian detection
for mobile devices. In: 2015 IEEE 18th International Conference
on Intelligent Transportation Systems, pp. 2364–2369 (2015).
https:// doi. org/ 10. 1109/ ITSC. 2015. 382

 8. Dai, J., Li, Y., He, K., Sun, J.: R-fcn: object detection via region-
based fully convolutional networks. In: Advances in neural infor-
mation processing systems, pp. 379–387 (2016)

 9. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision 2015 International Con-
ference on Computer Vision, ICCV 2015, pp. 1440–1448 (2015).
https:// doi. org/ 10. 1109/ ICCV. 2015. 169

 10. Golcarenarenji, G., Martinez-Alpiste, I., Wang, Q., Alcaraz-
Calero, J.M.: Efficient real-time human detection using unmanned
aerial vehicles optical imagery. Int. J. Remote Sens. 42(7), 2440–
2462 (2021). https:// doi. org/ 10. 1080/ 01431 161. 2020. 18624 35

 11. Idris, M.I., Zabidi, A., Yassin, I.M., Ali, M.S.A.M.: Human
posture recognition using android smartphone and artificial neu-
ral network. In: 2015 IEEE 6th Control and System Graduate
Research Colloquium (ICSGRC), pp. 120–124 (2015). https://
doi. org/ 10. 1109/ ICSGRC. 2015. 74124 77

 12. Ignatov, A., Timofte, R., Chou, W., Wang, K., Wu, M., Hartley,
T., Van Gool, L.: AI benchmark: running deep neural networks
on android smartphones. In: Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 11133 LNCS, pp. 288–314.
Springer (2019). https:// doi. org/ 10. 1007/ 978-3- 030- 11021-5_ 19

 13. Kawano, Y., Yanai, K.: FoodCam: a real-time food recognition
system on a smartphone. Multim. Tools Appl. 74(14), 5263–5287
(2015). https:// doi. org/ 10. 1007/ s11042- 014- 2000-8

 14. Kostoeva, R., Upadhyay, R., Sapar, Y., Zakhor, A.: Indoor 3D
interactive asset detection using a smartphone. Remote Sens. Spat.
Inf. Sci. ISPRS Arch. Photogramm. 42(2/W13), 811–817 (2019).
https:// doi. org/ 10. 5194/ isprs- archi ves- XLII-2- W13- 811- 2019

 15. Li, Z., Rao, Z.: Object detection and its implementation on android
devices, pp. 1–8 (2014)

 16. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,
D., Dollár, P., Zitnick, C.L.: Microsoft coco: common objects
in context. In: European Conference on Computer Vision, pp.
740–755. Springer (2014)

 17. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C.Y., Berg, A.C.: SSD: Single shot multibox detector. In: Lec-
ture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics) 9905 LNCS, pp. 21–37 (2016). https:// doi. org/ 10. 1007/
978-3- 319- 46448-0_2

 18. Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T., Omata, H.:
Road Damage Detection Using Deep Neural Networks with
Images Captured Through a Smartphone, pp. 4–6 (2018). arXiv:
1801. 09454. http:// arxiv. org/ abs/ 1801. 09454

 19. Martinez-Alpiste, I., Golcarenarenji, G., Wang, Q., et al.: A
dynamic discarding technique to increase speed and preserve

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1603.04467
https://github.com/AlexeyAB
https://doi.org/10.1109/TCAD.2017.2682138
https://developer.android.com/ndk/guides/neuralnetworks
https://developer.android.com/ndk/guides/neuralnetworks
https://doi.org/10.1109/ITSC.2015.382
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1080/01431161.2020.1862435
https://doi.org/10.1109/ICSGRC.2015.7412477
https://doi.org/10.1109/ICSGRC.2015.7412477
https://doi.org/10.1007/978-3-030-11021-5_19
https://doi.org/10.1007/s11042-014-2000-8
https://doi.org/10.5194/isprs-archives-XLII-2-W13-811-2019
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1801.09454
http://arxiv.org/abs/1801.09454
http://arxiv.org/abs/1801.09454

Journal of Real-Time Image Processing

1 3

accuracy for YOLOv3. Neural Comput. Appl. 33, 9961–9973
(2021). https:// doi. org/ 10. 1007/ s00521- 021- 05764-7

 20. Martinez-Alpiste, I., Casaseca-de-la Higuera, P., Alcaraz-Calero,
J., Grecos, C., Wang, Q.: Benchmarking machine-learning-based
object detection on a uav and mobile platform. In: 2019 IEEE
Wireless Communications and Networking Conference (WCNC).
IEEE, pp. 1–6 (2019)

 21. Martinez-Alpiste, I., Casaseca-de-la Higuera, P., Alcaraz-Calero,
J.M., Grecos, C., Wang, Q.: Smartphone-based object recognition
with embedded machine learning intelligence for unmanned aerial
vehicles. J. Field Robot. 37(3), 404–420 (2020)

 22. Nah, J.H., Suh, Y., Lim, Y.: L-Bench: an android benchmark set
for low-power mobile GPUs. Comput. Graphics 61, 40–49 (2016).
https:// doi. org/ 10. 1016/j. cag. 2016. 09. 002

 23. Nguyen, P.H., Arsalan, M., Koo, J.H., Naqvi, R.A., Truong, N.Q.,
Park, K.R.: LightdenseYOLO: a fast and accurate marker tracker
for autonomous UAV landing by visible light camera sensor on
drone. Sensors (Switzerland) 18(6), 1–30 (2018). https:// doi. org/
10. 3390/ s1806 1703

 24. Qualcomm: Snapdragon neural processing engine SDK (2019).
URL https:// devel oper. qualc omm. com/ docs/ snpe/ overv iew. html.
Accessed 20 June 2020

 25. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look
once: unified, real-time object detection. In: Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition 2016-Dec, pp. 779–788 (2016). https:// doi. org/
10. 1109/ CVPR. 2016. 91

 26. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger.
In: Proceedings—30th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017 2017-Jan, pp. 6517–6525
(2017). https:// doi. org/ 10. 1109/ CVPR. 2017. 690

 27. Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement
(2018). http:// arxiv. org/ abs/ 1804. 02767

 28. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-
time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https:// doi.
org/ 10. 1109/ TPAMI. 2016. 25770 31

 29. Sarkar, S., Patel, V.M., Chellappa, R.: Deep feature-based face
detection on mobile devices. In: ISBA 2016—IEEE International
Conference on Identity, Security and Behavior Analysis (2016).
https:// doi. org/ 10. 1109/ ISBA. 2016. 74772 30

 30. Stoimenov, S., Tsenov, G.T., Mladenov, V.M.: Face recognition
system in android using neural networks. In: 2016 13th Sympo-
sium on Neural Networks and Applications, NEUREL 2016, pp.
1–4 (2016). https:// doi. org/ 10. 1109/ NEUREL. 2016. 78001 38

 31. TensorFlow: GPU delegation. https:// www. tenso rflow. org/ lite/
perfo rmance/ gpu. Accessed 1 Feb 2020

 32. TensorFlow: Tensorflow lite (2019). https:// www. tenso rflow. org/
lite/ guide. Accessed 1 Feb 2020

 33. Tobias, L., Ducournau, A., Rousseau, F., Mercier, G., Fablet, R.:
Convolutional neural networks for object recognition on mobile
devices: a case study. In: Proceedings—International Conference
on Pattern Recognition, pp. 3530–3535 (2017). https:// doi. org/ 10.
1109/ ICPR. 2016. 79001 81

 34. Xu, M., Liu, J., Liu, Y., Lin, F.X., Liu, Y., Liu, X.: A first look
at deep learning apps on smartphones. In: The World Wide Web
Conference on—WWW ’19 (May), 2125–2136 (2019). https://
doi. org/ 10. 1145/ 33085 58. 33135 91. http:// dl. acm. org/ citat ion.
cfm? doid= 33085 58. 33135 91

 35. Yong, S.P., Yeong, Y.C.: Human object detection in forest with
deep learning based on Drone’s vision. In: 2018 4th International
Conference on Computer and Information Sciences: Revolutionis-
ing Digital Landscape for Sustainable Smart Society, ICCOINS
2018—Proceedings, pp. 1–5 (2018). https:// doi. org/ 10. 1109/
ICCOI NS. 2018. 85105 64

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Ignacio Martinez‑Alpiste is a Postdoctoral Researcher in Artificial
Intelligence at the University of the West of Scotland, UK. He is a
winner of the UK Times Higher Education (THE) Awards 2020 –
Knowledge Exchange and the 2020 Scotland CeeD Industry Awards
– Innovation Award. He is Co-Investigator for the CENSIS S-RPAS,
SmartCranes, NG-RPAS and for EU Horizon 2020 funded projects
(SELFNET, 5G-INDUCE and ARCADIAN-IoT). His main research
interests include AI with applications in Unmanned Aerial Systems, 5G
networks and video networking, among others. He is also a reviewer
of international scientific journals and conferences. He received his
PhD at the UWS.

Gelayol Golcarenarenji is a Postdoctoral Researcher in artificial intel-
ligence at the University of the West of Scotland (UWS), UK, where
she is working on the 5G-INDUCE European project as well as the
NG-RPAS project. Her current research interests include artificial intel-
ligence, machine learning, deep learning methods and applications.
Previously, she was involved in “Smart crane Real-Time Object Detec-
tion” and “Smart Remotely Piloted Aircraft Systems (S-RPAS) for
Real-Time detection” of missing people and she and her team won the
CEED-SCOTLAND innovation award, and UK Times Higher Educa-
tion (THE) Awards 2021 knowledge exchange award for the project.
She received her PhD degree from Deakin University, Australia, where
she was involved in the automation of carbon fiber production line
using image processing and industrial machine learning techniques.
Her research to date has resulted in more than 20 peer-reviewed journal
papers, conference papers, and book chapters.

Qi Wang is a Professor in Next-Generation Smart Networks and Ser-
vices at UWS. He has served as a Board Member of the EU 5G-PPP
Technology Board, and Member of several 5G-PPP Working Groups,
Scotland’s Developing AI and AI-Enabled Products and Services
Working Group, and ITU-T Focus Group on Autonomous Networks.
He was the Co-Technical Manager for EU Horizon 2020 5G projects
SELFNET and SliceNet, and Principal Investigator (PI) or Co-PI for
projects funded by EU Horizon 2020 (5G INDUCE, 6G BRAINS,
ARCADIAN-IoT), UK EPSRC, UK CENSIS and so on. He has pub-
lished over 170 papers and is a winner of several Best Paper Awards.
He is a winner of the UK Times Higher Education (THE) Awards
2020 - Knowledge Exchange or Transfer Initiative of the Year Award,
and the 2020 Scotland CeeD Industry Awards - Innovation Award,
among others.

Jose Maria Alcaraz‑Calero is a Professor in Networks at the School
of Engineering and Computing at the UWS. He is an IEEE Senior
Member with experience in 5G networks, network slicing, monitoring,
automation and management. In the academic side, he has more than
150 publications SCI-indexed international journals, conferences and
books. He has been involved in 20 editorial activities in the most pres-
tigious journal in the field and served as chair in 20 international flag-
ship conferences and contributes as a Technical Programme Committee
member in more than 100 international conferences. In the industrial
side, he has more than 50 patents and intellectual property rights. From
the leadership perspective, Jose M. has significant experience as Princi-
pal Investigator or as Co-Investigator in more than 20 research projects
at local, national and especially at European and international level. He
is the Co-Technical Manager for EU Horizon 2020 projects SELFNET
and SliceNet.

https://doi.org/10.1007/s00521-021-05764-7
https://doi.org/10.1016/j.cag.2016.09.002
https://doi.org/10.3390/s18061703
https://doi.org/10.3390/s18061703
https://developer.qualcomm.com/docs/snpe/overview.html
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2017.690
http://arxiv.org/abs/1804.02767
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/ISBA.2016.7477230
https://doi.org/10.1109/NEUREL.2016.7800138
https://www.tensorflow.org/lite/performance/gpu
https://www.tensorflow.org/lite/performance/gpu
https://www.tensorflow.org/lite/guide
https://www.tensorflow.org/lite/guide
https://doi.org/10.1109/ICPR.2016.7900181
https://doi.org/10.1109/ICPR.2016.7900181
https://doi.org/10.1145/3308558.3313591
https://doi.org/10.1145/3308558.3313591
http://dl.acm.org/citation.cfm?doid=3308558.3313591
http://dl.acm.org/citation.cfm?doid=3308558.3313591
https://doi.org/10.1109/ICCOINS.2018.8510564
https://doi.org/10.1109/ICCOINS.2018.8510564

	Smartphone-based real-time object recognition architecture for portable and constrained systems
	Abstract
	1 Introduction
	2 Related work
	2.1 Object recognition
	2.2 Analysis of previous smartphone object recognition work

	3 Analysis of deep learning mobile platforms
	3.1 OpenCV
	3.2 TensorFlow mobile
	3.3 TensorFlow lite
	3.4 Qualcomm neural network processing SDK

	4 The proposed system
	4.1 Empirical platform evaluation criteria for system design
	4.2 Preprocessing
	4.3 Model size
	4.4 Loading time
	4.5 Accuracy
	4.6 Speed
	4.7 Average RAM usage
	4.8 Maximum RAM usage
	4.9 Battery
	4.10 Temperature
	4.11 Tracker
	4.12 Design of the system

	5 Experimental results
	5.1 Testbed
	5.2 Approach evaluation
	5.3 Evaluation of the approach in a real scenario
	5.4 Discussion

	6 Concluding remarks
	Acknowledgements
	References

