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Abstract
Machine learning algorithms based on convolutional neural networks (CNNs) have recently been explored in a myriad of 
object detection applications. Nonetheless, many devices with limited computation resources and strict power consumption 
constraints are not suitable to run such algorithms designed for high-performance computers. Hence, a novel smartphone-
based architecture intended for portable and constrained systems is designed and implemented to run CNN-based object 
recognition in real time and with high efficiency. The system is designed and optimised by leveraging the integration of the 
best of its kind from the state-of-the-art machine learning platforms including OpenCV, TensorFlow Lite, and Qualcomm 
Snapdragon informed by empirical testing and evaluation of each candidate framework in a comparable scenario with a high 
demanding neural network. The final system has been prototyped combining the strengths from these frameworks and led 
to a new machine learning-based object recognition execution environment embedded in a smartphone with advantageous 
performance compared with the previous frameworks.

Keywords Machine learning · Object recognition · Deep Learning platforms · CNN · YOLOv3 · Embedded systems

1 Introduction

Artificial Intelligence (AI) has gained momentum in recent 
years in light of the huge potential in a wide range of appli-
cations, and there is an emerging trend to run machine learn-
ing in lightweight, embedded systems, such as smartphones 
for high mobility, low cost, rapid deployment and other 
benefits. Smartphone-based convolutional neural network 
(CNN) capabilities are an enabling technology for a vari-
ety of machine learning empowered novel use cases, where 
object recognition is required in outdoor areas, where there 
are other limiting factors such as the need of freedom of 
movement for the user, or the limited infrastructure and 
coverage available in the geographical area. The computa-
tional power of smartphones has drastically increased in the 
past few years and they are now comparable with desktop 
computers available some years ago. Nevertheless, running 
such CNN models on mobile devices is still challenging 
owing to the limited computing power and energy available 

[12]. Traditionally, CNN models run on high performance 
computing servers due to hardware requirements and are 
not available to operate on smartphones. To overcome these 
issues, there is a vital need for a machine learning frame-
work suitable for smartphones to perform computing-inten-
sive computer vision tasks, such as object recognition.

Due to an emerging interest in the Android operating sys-
tem, some popular deep learning frameworks were ported to 
this operating system including TensorFlow Mobile (TFM), 
TensorFlow lite (TFL), OpenCV and Qualcomm Snap-
dragon. These platforms are destined to run the inference 
task on mobile phones, suitable for scenarios, where there 
is poor or no connectivity [34]. Each of these popular frame-
works has its own strengths and weaknesses, which should 
be taken into account in selecting the best architecture for 
object recognition. However, this is an open question yet to 
be resolved in practical terms. Given the highly complicated 
and heterogeneous models in these frameworks, an empirical 
testing and evaluation based methodology would be the most 
practical approach. An object recognition system is gener-
ally composed of three steps, namely, image preprocessing, 
image recognition and image tracking. For each step, the 
selection of the best mobile platform based on evaluation is 
required to obtain the best system performance. A platform 
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is typically evaluated based on criteria including accuracy, 
speed, RAM usage and model size [21]. Image recognition 
is a computational expensive process able to mark with a 
bounding box the objective in an image; however, although 
object tracking is much less computational expensive, it 
needs the initial coordinates of the object to follow its move-
ments in the next frames. Thus, the combination of image 
recognition and image tracking may create competitive sys-
tem by reducing computation.

CNN-based object detectors are divided into two main 
categories: one-stage and two-stage detectors. Two-stage 
detectors are computationally expensive as first the regions 
of interest (ROI) are extracted and then the classification will 
take place. This method is not suitable for real-time object 
recognition on devices with power limitations. Meanwhile, 
one-stage detectors such as You Only Look Once (YOLO) 
[26] and Single Shot Detector (SSD) [17] achieve real-time 
object recognition by concurrently selecting and classify-
ing the ROIs. These methods are faster at the cost of lower 
accuracy. YOLOv3 is faster and more accurate than other 
YOLO-based detectors and thus is explored in this study to, 
first, analyse the popular machine learning platforms and 
second to comprehensively test the proposed architecture. 
Hence, the main contributions of this paper are summarised 
as follows: 

1. Practical deployment and testing of popular machine 
learning frameworks, comprehensive evaluation and 
analysis of popular mobile platforms based on criteria 
affecting the system performance, and contributing to 
an empirical methodology in selecting the most suitable 
technologies in machine learning based object recogni-
tion tasks.

2. Design and implementation of a novel object recognition 
architecture informed by the empirical analysis of the 
popular machine learning frameworks under study in a 
smartphone-based operational environment, leading to 
a highly optimised system of practical use.

3. New machine learning benchmark for object recogni-
tion systems in a smartphone platform, providing new 
insights into the performance of such systems.

4. Discussions regarding the limitations of the proposed 
architecture on running object recognition systems on 
portable devices.

The rest of the paper is structured as follows: Sect. 2 reviews 
popular object recognition algorithms and related work, and 
Sect. 3 further provides a detailed analysis and assessment 
of each of these individual machine learning frameworks. 
Section 4 experimentally tests and evaluates the previous 
analysis realised for each deployed platform. Furthermore, 
it presents the design and implementation of the proposed 
architecture. empirical results of the proposed architecture. 

Section 5 tests and compares the system. Finally, Sect. 6 
concludes the paper.

2  Related work

2.1  Object recognition

As mentioned, object recognition algorithms based on CNN, 
can be classified into two main categories: two-stage and 
one-stage detectors. In two-stage detectors, such as Fast 
R-CNN [9], Faster R-CNN [28] , and R-FCN [8], the region 
proposal is generated in the first stage. In the second stage, 
the object classification and the regression of bounding-box 
(bbox) will be conducted. These methods are high in accu-
racy but slow in recognition. In one-stage detectors, such as 
SSD and YOLO, the object classification and bbox regres-
sion are performed simultaneously without a region proposal 
stage. These methods are fast in recognition but have low 
accuracy. YOLOv3 has a fast speed in multiple object rec-
ognition in a single inference. Furthermore, the low accuracy 
of YOLO and YOLOv2 [25, 26] is solved using a multi-stage 
recognition method. YOLOv3 is used when the system has 
enough computational resources. Tiny-YOLOv3 is for con-
strained environments and less accurate than YOLOv3 [2, 
27].

2.2  Analysis of previous smartphone object 
recognition work

This subsection provides an overview of various use cases in 
the literature related to object recognition on Android mobile 
devices. There is a collection of existing work regarding 
popular machine learning (ML) platforms and machine-
learning object recognition on mobile devices. Table 1 pre-
sents and compares the published results of using different 
CNNs on smartphones in relation to the study in this paper. 
The values represented in Table 1 are composed by accu-
racy, speed and model size. If a studied publication provides 
multiple results, these will be summarised between brack-
ets. In [12], Ignatov et al. presented a review of the current 
state of deep learning and described the popular AI frame-
works and the limitations of running AI including object 
recognition on smartphones that were considered for the 
implementation of our novel architecture. In [4], an archi-
tecture was presented for Ultra-low Power Binary-Weight 
CNN Acceleration. Although the work stated that by using 
binary-weights during training, a comparable classification 
could be achieved with non-binary weights, this can still 
reduce the accuracy. Moreover, an Android benchmark set 
was provided in [22] on OpenGL platform for low-power 
mobile GPUs. As stated by the authors, this android bench-
mark, however, is not ideal for GPU benchmarking and does 
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not measure power efficiency. In addition, Alpiste et al. [20] 
presented benchmarking results regarding the performance 
of OpenCV as a popular computer vision and machine learn-
ing platform in two different studies using YOLOv3 and 
Tiny-YOLOv3 algorithms embedded on a smartphone. In 
these studies, however, the authors did not use other popu-
lar machine learning platforms including TFM, TFL, and 
Snapdragon to achieve close to real-time speed for afore-
mentioned algorithms. As shown in Table 1, the studies in 
[7, 14, 18, 29, 30, 33, 35], and [15] used ML platforms, such 
as TFL, Google API, Snapdragon and Caffe and computer 
vision platforms such as OpenCV. Others deploy OpenCV, 
which combines machine learning with computer vision. 
These studies, however, did not provide all the necessary 
metrics including model size to make the comparisons [21]. 
In [23], a marker tracker was designed using a light-weight 
YOLO-based algorithm. Although the work achieved real-
time speed (20 fps) using this algorithm, the images under 
study (markers) are easily detectable. Hence, the obtained 
accuracy (96%) is expected.

In summary, none of the above studies has covered a thor-
ough analysis of the popular machine learning frameworks 
to provide a novel architecture for object recognition systems 
in constrained environments. For the first time, this paper 

provides a novel architecture for object recognition on con-
strained environments considering all the metrics that affect 
the system performance.

3  Analysis of deep learning mobile 
platforms

This section analyses the interesting different popular 
machine learning frameworks deployed on portable plat-
forms with a focus on smartphones. The investigation 
includes four open-source machine learning libraries includ-
ing OpenCV, TFM, TensorFlow Lite and Qualcomm Neural 
Processing Software Development Kit (SDK). Other plat-
forms such as Keras were not considered, because it cre-
ates an abstraction layer over TensorFlow increasing the 
overhead and losing the control over complex architectures. 
For instance, Google API was not considered, because it is 
prepared with a set of ML models already included in Ten-
sorFlow, making Google API easy-to-use for non experts 
developers. Due to the focus of the study being on the 
object recognition process and this process being the most 
resource-intensive task, state-of-the-art mature and consoli-
dated ML platforms were selected.

Table 1  Comparison of object recognition use cases on smartphones in literature

NG not given, TP this paper, italic lack of information, bold our approach

Aspects

Ref Objective Exec Environment Algorithm Platform Accuracy Speed (inference time) Model size

[20] Common Android YOLOV3/ DJI+OpenCV 55.3/ [0.08/ 248/
Objects Tiny-YOLOv3 33.1% 1.37] fps 35.4 MB

SSD/ DJI + OpenCV/ 41.2/
[21] Common Android YOLOv3/ DJI+Tensorflow 55.3/ [0.06, 1] fps [23, 237] MB

Objects Tiny-YOLOv3 33.1%
[30] Face Android Customed CNN Google API “small error” NG NG
[29] Face Smartphone Alexnet& SVM RenderScript [88%, 96%] [0.03, 0.17] fps NG
[35] Human Smartphone Googlenet/ Keras/ 97.32% NG NG

Mobilenet + SSD Caffe
[33] Art Sculpture Ipad Alexnet Keras/ [57.4, 59.3]% [1.01, 3.4] fps NG

Googlenet Caffe
[18] Road damage Smartphone Inception V2/ NG Above 75% 0.66 fps NG

Mobilenet + SSD
[7] Pedestrian Tablet/Smartphone AdaBoost Qualcomm NG [8, 20] fps NG
[13] Food Android HOG&SVM OpenCV/VLFEAT 79.2% NG NG
[14] 3D asset Smartphone SSD Tensorflow lite 75% NG 22 MB
[15] Vehicle Android Squeezenet Tensorflow 76.7% NG 8 MB
[11] Gesture Android 3L MLP Matlab 95% NG NG
[23] Marker Smartphone LightDenseYOLO Snapdragon 96% 20 fps NG

OpenCV/
TP Common Android Tiny-YOLOv3 Tensorflow Lite/ 33.1% 17.7 fps 33.8 MB

Objects Snapdragon COCO DS
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Figure 1 illustrates the comprehensive architecture of 
the machine learning libraries analysed and compared in 
this study. To test the proposed architecture shown in Fig. 1, 
we employ a state-of-the-art CNN YOLOv3. The standard 
version of YOLOv3 destined for non-constrained environ-
ments is utilised. Based on the architecture, the YOLOv3 
model is in a format of a configuration file and a weight 
file [2]. These files are then integrated and converted to a 
format appropriate for the destined framework. To realise 
the conversion between different platform formats, Keras, 
which is a machine learning platform, is utilised. YOLOv3 
is considered a high-demanding CNN in constrained envi-
ronments. The architecture of YOLOv3 comprises 106 fully 
convolutional layers. This demands very high computational 
power for hardware. The main intention of testing this highly 
demanding neural network (YOLOv3) in our portable envi-
ronment is to stress the system and evaluate the performance 
of the frameworks in high-demanding situations. If we are 
able to obtain acceptable results with the standard version, 
we will achieve greater results with lighter versions of CNN 
models in terms of inference time.

In the following subsections, the deployment of different 
platforms is thoroughly explained according to Fig. 1.

3.1  OpenCV

Open Source Computer Vision Library (OpenCV) is an 
open-source framework for image and video analysis [6]. 
Although this framework has been deployed to focus on 

image processing, it also provides functions for real-time 
machine learning. OpenCV has the ability to read the neural 
network configuration and the weight file directly without 
a need for a converter to load the CNN model into memory 
in an appropriate format. Meanwhile, OpenCV is limited in 
terms of compatibility with the processing units of smart-
phones. The platform is just able to run the neural network 
models using the Central Processing Unit (CPU), missing 
the opportunity to take advantage of high processing power 
of the Graphic Processing Unit (GPU) and the Digital Signal 
Processor (DSP).

As mentioned, due to being very mature and powerful, 
OpenCV is well implemented and adopted all around the 
world by developers. Its main focus is on real-time image 
processing, which makes it effective and fast for image pre-
processing of the recognition process.

3.2  TensorFlow mobile

TensorFlow Mobile is a machine learning platform devel-
oped by Google. TFM aims to support different modern 
computing devices from smartphones [1] to embedded 
devices, such as Raspberry Pi and mobile applications [3]. 
TFM was derived from TensorFlow. Almost all the opera-
tions in the standard TensorFlow are supported by the TFM 
library. On account of its general implementation to be appli-
cable in a wide variety of architectures, TFM has a drawback 
in performance when it comes to constrained environments. 
This limitation is not only related to computation power 

Fig. 1  State of the art technolo-
gies for object recognition and 
its deployment in smartphones
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and memory but also in power consumption. This platform 
is now deprecated and substituted by TFL which mainly 
focuses on systems with low computational resources. Nev-
ertheless, TFM is still in use in applications that have not 
been updated.

Unlike OpenCV, TFM needs a converter to transform 
the neural network configuration file and its weights into 
a protobuf file (.pb), which is fully compatible with this 
library. Using the protobuf file, TensorFlow can apply dif-
ferent optimisation techniques such as quantisation to further 
improve the speed of execution. Although this type of model 
optimisation may be beneficial for limited environments, it 
may compromise the accuracy. Similar to OpenCV, TFM 
merely runs the trained model on a CPU. This increases 
the portability between processors. This, however, causes 
the platform not to be easily deployable on constrained 
environments.

3.3  TensorFlow lite

TensorFlow Lite is the light version of TFM for constrained 
environments reducing latency and increasing efficiency. In 
addition, released by Google, TFL, is a machine learning 
framework for running TensorFlow models on smartphones, 
embedded systems and Internet of Things (IoT) devices with 
low latency and small battery size [32]. Comparable to TFM, 
TFL needs a converter to alter the neural network configura-
tion file and its weights into a flatbuffer model (.tflite).

Meanwhile, TFL is more versatile than TFM, being able 
to execute machine learning algorithms on all on-board pro-
cessors. Identical to TFM and OpenCV, TensorFlow Lite can 
execute the neural network on a CPU in a straightforward 
manner, although TFL gives faster inference time.

In addition, TFL has the ability to delegate part or all 
of the execution of an algorithm to mobile GPU. This del-
egation is through two key methods: GPU delegation [31] 
and android neural network API (NNAPI) [5]. In GPU del-
egation technique, TFL defines an abstraction layer for the 
programmer to communicate with the GPU. This delegation 
assists to obtain a better performance in terms of inference 
time and resource consumption. Although, being compatible 
with IOS smartphones and multitude of Android devices, 
several models and operations are not supported. This limits 
the developers’ ability to execute different types of neural 
networks on this platform. For instance, YOLOv3 operations 
are not supported on this platform. However, operations for 
Inception and Mobilenet models are supported and used in 
TFL tutorials.

As already stated, another method of executing the CNN 
on GPU is through NNAPI. An interface has been imple-
mented for TFL to communicate with the Android Neural 
Network API. NNAPI intends to use hardware accelerators 
for machine learning frameworks. To realise this, vendors 

must provide drivers for their own processors to utilise 
the API and make it compatible with on-device proces-
sors including CPU, GPU and DSP. NNAPI is then able to 
apply the neural network operations from TFL to mobile 
device hardware. Nonetheless, similar to the GPU Delega-
tion technique, there are limitations when running YOLOv3 
operations.

3.4  Qualcomm neural network processing SDK

The Snapdragon Neural Processing Engine SDK (SNPE) is 
a Qualcomm Snapdragon software accelerated at runtime 
to run deep neural networks [24]. Our system has integrated 
a Qualcomm Snapdragon processor to be compatible with 
SNPE. As Fig. 1 displays, SNPE needs a model formatted 
into a Deep Learning Container (DLC) file; therefore, a con-
verter is employed. This converter supplied by Qualcomm 
demands a protobuf model as an input; thus, the system also 
needs the same converter as TFM.

This platform is fully compatible with its own drivers 
providing this ability to directly manipulate onboard pro-
cessors (CPU, GPU and DSP). This will result in improved 
efficiency. There are two main drawbacks of deploying 
this SDK. First, unlike previous platforms, compatibility 
is decreased due to not all smartphones are equipped with 
Qualcomm Snapdragon. Second, the deployment of SNPE is 
more complicated because of low-level features the develop-
ers should deal with, forcing them to have a deeper under-
standing of the hardware.

4  The proposed system

This section describes the proposed system deployed on a 
smartphone for object recognition. First, a comprehensive 
evaluation was performed to obtain the best frameworks for 
our proposed object recognition system. Second, the system 
is established based on the results from Sect.  4.1, and a 
concurrent object recognition pipeline is defined.

4.1  Empirical platform evaluation criteria 
for system design

In this subsection, a complete evaluation is done to select 
the best frameworks for our system design. Three steps are 
involved in an object recognition system including image 
preprocessing, image recognition and image tracking. To 
achieve the best performance of the object recognition sys-
tem, the best platform should be selected for each aforemen-
tioned step based on the metrics affecting the system per-
formance. To this end, this section provides a step-by-step 
approach to choose the best platform for each step and obtain 
the most efficient and fast machine learning recognition 
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architecture after deploying and implementing each platform 
in the same environment.

4.2  Preprocessing

Preprocessing is a fundamental step when the recognition 
pipeline is running. It transforms raw frames (YUV) into 
a proper format for the input of the neural network. This 
step includes image scaling, image normalisation and colour 
space transformation. Image scaling is necessary to reduce 
the input size from 1280 × 720 to 416 × 416 to maintain a 
trade-off between speed and accuracy and achieve real-time 
detection for critical applications. Similar to the YOLO’s 
authors, in this manuscript we have selected an input size of 
416 × 416 to provide easier result comparison with the plat-
forms of other researchers. Image normalisation is another 
stage to scale pixel values from 0 to 255 to a range of 0–1. 
Finally, a colour space transformation is needed in some 
cases. OpenCV loads the frame in BGR. Hence, a colour 
space transformation to RGB is needed. TFL and SNPE 
do not provide this step, thereby relying on Android librar-
ies and lasting 56.3 ms. OpenCV, however, produces great 
results because of being powerful and mature in image pro-
cessing with 9.3 ms [6].

4.3  Model size

The size of the models results in memory usage. Snapdragon 
and TFL approaches use serialisation to convert the con-
figuration file and a weight file of the CNN into a readable 
format. This leads to a better result in terms of model size. 
In our study, the format of the flatbuffer model is suitable for 
TensorFlow Lite. Meanwhile, the double conversion from 
Protobuf to DLC in SNPE decreases the model size. Table 2 
shows the size of the models for YOLOv3 for different for-
mats related to each machine learning platform.

4.4  Loading time

Smaller models do not necessarily mean the model will be 
loaded faster it into memory. The lowest model to be loaded 
is the DLC from Qualcomm Snapdragon. The next comes 
the OpenCV, which loads two files separately in 456 ms 
which is an acceptable result. Finally, the interpreter of the 
flatbuffer format is the fastest among all. Table 2 shows the 
average loading time of each model based on platform and 
format.

Nevertheless, the average loading time is not a determi-
nant key factor. This is due to the fact that the models are just 
loaded once into memory at the beginning of the process.

4.5  Accuracy

Accuracy does not depend on the machine learning plat-
form, where the neural network is executed. It depends 
intrinsically on the algorithm itself and the received training. 
Hence, the three platforms perform equally in terms of accu-
racy. The only way to improve the accuracy and modify the 
speed and the model size is through the model optimisation.

4.6  Speed

In constrained environments, speed is the key metric to be 
influenced. Inference time is the time taken from when a 
frame starts being processed until it obtains the results in 
terms of object recognition. Table 2 shows the inference time 
of recognising objects for each frame based on given plat-
forms. OpenCV is the slowest one. Similarly, TFL obtained 
the same results. Snapdragon Library had the best result 
with almost two frames per second. In addition, Fig. 2 shows 
the cumulative average over 500 frames for each platform. 
As TFL and OpenCV are executed in CPU, the first itera-
tions of the processes require more time due to the access 
to memory. Over time, these values achieve a controlled 
and stable execution. As observed, the inference time taken 
for TFL and OpenCV increases gradually. This means that 

Table 2  Empirical factor comparison for each Machine Learning 
Platform

Factor OpenCV TF Lite SNPE

Preprocessing 9.3 ms 56.3 ms 56.3 ms
Model size 237.08 MB 236.66 MB 212.41 MB
Loading time 456 ms 271 ms 2618 ms
Accuracy Algorithm dependent (not platform)
Speed (Inf. Time) 5203ms 4379 ms 595 ms
Average RAM 633 MB 263 MB 707 MB
Maximum RAM 1.5 GB 1 GB 1.1 GB
Battery 3280 mAh 3280 mAh 3280 mAh
Temperature 46 °C 46 °C 46 °C
Tracker Sequential Concurrent Not Provided
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of YOLOv3 for each Machine Learning Platform
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both platforms suffer a saturation when the frames are being 
processed by the neural network. In contrast, Snapdragon 
remains stable for each frame.

4.7  Average RAM usage

Highly compute-intensive tasks such as object recognition 
and image processing may lead to higher average RAM 
usage. This subsection evaluates the utilised RAM over an 
hour during the object recognition process. Table 2 shows 
that TFL, Snapdragon and OpenCV have the RAM usage 
of 236 MB, 707 MB and 633 MB, respectively. Thus, TFL 
performs the best.

4.8  Maximum RAM usage

At some points, RAM usage may hit a peak over the recogni-
tion process causing anomalies in the system. Table 2 also 
shows that TFL and Snapdragon perform almost equally and 
OpenCV uses 0.5 GB more memory when reaches maxi-
mum. These average and maximum RAM usage are not sig-
nificant in a smartphone system when the smartphone has 
more than 4GB of memory.

4.9  Battery

In constrained environments, the battery may drain rapidly 
when executing compute-intensive algorithms. In our sys-
tem, the battery consumption was very similar for all the 
concerned platforms due to the most resource-intensive task 
being the screen brightness while playing the videos, which 
is a compulsory process for all. In our system, 3280 mAh 
battery was drained for all the platforms after an hour of 
CNN execution.

4.10  Temperature

A compute-intensive process affects the temperature stabi-
lisation, especially in constrained environments. The high 
temperature in a device can decrease the performance to a 
large extent in machine learning processes. In our use case, 
temperature increased until reached a plateau of 46–47°C 
for all the platforms.

4.11  Tracker

As defined in the speed subsection, real-time speed may not 
be achievable by deep CNN models such as YOLOv3 on 
constrained systems; therefore, a tracker as an external aid is 
needed to create a visual perception of real time for the final 
user. Among the machine learning platforms studied in this 
paper, OpenCV and TFL are the only platforms that provide 
trackers. As a result, Snapdragon was not evaluated in this 

section. The authors of [21] provided two reasons in favour 
of TFL when it comes to tracking. First of all, TensorFlow is 
faster than OpenCV when tracking an object. Second, Ten-
sorFlow has the ability to simultaneously execute the tracker 
to follow multiple recognised objects in parallel using dif-
ferent cores. These reasons make TFL the best choice when 
tracking multiple objects on the screen. For detection, as 
we implement the algorithm in Snapdragon, the decision of 
using more than one core relies on the API.

4.12  Design of the system

In this subsection, we propose a new system based on inte-
gration of the best of its kind component frameworks that 
have been empirically justified. The frameworks chosen 
to be integrated in our proposed system correspond to the 
results presented in Sect. 4.1. Our proposed system follows 
the three standard processes: image preprocessing, object 
recognition and object tracking. For the preprocessing step, 
OpenCV was selected as the most appropriate platform due 
to its strength in image processing. Regarding the recogni-
tion process, the Snapdragon framework was chosen due 
to its efficient support of GPU acceleration. Finally, the 
tracking process was carried out using the TFL platform 
for its speed and capability in tracking multiple objects 
simultaneously.

These three processes are executed in two concurrent 
threads, a recognition thread which performs the preproc-
esing and the image recognition process, and a second thread 
which leads the tracking process. Figure 3 depicts the work-
flow, since the video is decoded until the frames are shown 
on the screen with its correspondent recognition. The afore-
mentioned workflow are explained in the following steps. 

 1. The proposed approach loads the object recognition 
model on the correspondent processor. As the chosen 
framework is SNPE, the model is loaded on the GPU 
to reduce the inference time.
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 2. The video is decoded and each frame is stored in a first 
in first out (FIFO) queue for further processing.

 3. The Scheduler is a process that manages the frames 
by assigning tasks to them. In this work, this process 
is mandatory to achieve real-time detection from the 
video feed. The frames extracted from the FIFO queue 
and delivered to to the recognition or tracking Threads 
for processing when any of them are idle. However, 
if both threads are currently occupied, the frame is 
marked as non-processed. This process will release 
every frame as soon as possible to achieve real-time 
processing. The Scheduler allows the neural network 
designer to abstract the design of the CNN from the 
implementation in the system by delivering the lat-
est frame captured by the camera. If the CNN is com-
putationally expensive, the Scheduler will adapt to a 
lower speed by providing the latest frame, and thus, 
the results are reliable in time. In contrast, if the CNN 
execution is faster than real time, the Scheduler will 
provide all available frames without discarding any.

 4. The Scheduler displays all the frames that are sent on 
the screen to the final user.

 5. The Tracker thread receives the frames from the Sched-
uler when idle.

 6. The Recognition thread receives the frames from the 
Scheduler when idle. First, OpenCV preprocesses the 
frames. This action is divided into three main opera-
tions, namely, colour space transformation, compres-
sion and re-escalation of the frame, and image nor-
malisation. At this point, the frame is ready for the 
recognition process.

 7. SNPE executes the CNN and passes forward the pre-
processed frame. This is the most time-consuming task 
of the object recognition pipeline.

 8. The result is obtained by the execution of the CNN. 
The coordinates of the detected object, the class of 
each object and the confidence score are extracted from 
the results.

 9. The previous results are stored in the Tracker database 
along with the frame.

 10. Each frame received by the Tracker will consult the 
database to obtain the values for tracking. The tracker 
compares the current frame with the frame stored in 
the database, and the new location of the objects is 
updated in the database. If the Tracker loses an object, 
the entry of the database referring to that particular 
object will be deleted.

 11. The Tracker updates the position of the recognised 
object on the screen.

This system workflow is implemented and tested in Sect. 5 
for each ML platform and the proposed system.

5  Experimental results

5.1  Testbed

The deployed testbed was executed on a “Xiaomi Black-
shark” smartphone with Qualcomm “Snapdragon 845” 
processor with 8 cores at 2.8 GHz and 8 GB of RAM 
memory. It has an integrated multilayer liquid-cooling to 
reduce the processor temperature. As “Snapdragon 845” 
is a popular processor choice, it was selected to study the 
proposed architecture. Table 3 summarises the specs of 
the smartphone and the version of the machine learn-
ing platform deployed. The machine learning algorithm 
deployed for testing is YOLOv3. Moreover, the results 
were obtained from the thread related to object recogni-
tion process which is specialised for recognition of small 
objects. This layer is more computationally expensive 
than other layers that detect bigger objects. YOLOv3 was 
trained with COCO data set with an obtained accuracy 
of 55.3 mAP. The COCO data set [16] is a very wide and 
complex data set for comparison. It comprises 80 object 
categories with more than 1.5 million object instances. It 
also has over 300k images in different environments and 
scenarios. In this section, we deploy standard YOLOv3 
due to its computational expensive resources needed to 
be executed. At these tests, we want to stress the systems 
and demand the maximum performance of each approach 
to be easily comparable.

Table 3  Smartphone specs and machine learning platforms version

Smartphone specs
Processor Snapdragon 845
Instruction ARMv8-A
CPU 4× 2.8 GHz Kryo 385, 4 × 1.8 GHz Kryo
CPU Frec. 2800 MHz
GPU Qualcomm Adreno 630, 710 MHz
GPU Frec. 710 MHz
L1 Cache 32 kB + 32 kB
L2 Cache 1536 kB
L3 Cache 2048 kB
RAM 8 GB, 1866 MHz
Storage 256 GB
Android Version 9
Machine learning platforms version
OpenCV 4.0.0
TensorFlow 2.0.0
SNPE 1.26.0
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5.2  Approach evaluation

To evaluate the performance of the proposed system, we 
carried out extensive experiments. The proposed system 
was compared with three other alternative approaches: 
Snapdragon, TFL and OpenCV. These three alternative 
approaches adopted their own built-in processes for preproc-
essing, recognition and tracking. The only exception process 
is tracking in Snapdragon. As Snapdragon has not provided 
any tracking algorithms, the TensorFlow tracker was adopted 
in the Snapdragon pipeline to allow the comparison across 
the pipelines under study.

In the experiments, videos were recorded at 24 fps, and 
then fed into the proposed system. The videos were recorded 
at 24 fps, since it is a standard in every smartphone camera 
and it allows a good balance for viewing experience and 
real-time processing in our platform. An experiment was 
conducted to count how many frames were processed by the 
recognition process and the tracking process. It is noted that 
the preprocessing process is included as a part of the recog-
nition process due to the fact that preprocessing will always 
be executed just before the recognition process. The frames 
that are not handled are called “dropped” frames. These dis-
carded frames correspond to the frames that are not tracked 
or recognised. In addition, the recognised frames were also 
processed by the Tracker, and thus the sum of tracked frames 
and dropped frames must be 24 in each second of time.

Figures 4, 5 and 6 show the number of frames managed 
for 30 s. In total, 720 frames have been considered. Fig-
ure 4 exhibits the number of frames recognised per second. 
As it can be observed, TFL and OpenCV are just able to 
detect one frame every 3–4 s. In contrast, Snapdragon and 
our approach achieve between 1 and 2 frames per second. 
Nevertheless, our approach detects more frames per seconds, 
because it has a lower preprocessing rate.

Figure  5 illustrates the experimental results regard-
ing the tracked frames. As explained in Sect. 3, the best 

tracking process was realised by TensorFlow, and due to all 
the approaches with the exception of OpenCV executes this 
Tracker, they obtain good results. Nonetheless, there is an 
overload when executing TFL and OpenCV systems leading 
to a decrease in the performance in both platforms. The same 
trend to decrease in the performance is depicted in Fig. 6, 
which exposes the dropped frames. Over each second, TFL 
and OpenCV increase the number of frames dropped over 
the time spent.

Although the previous figures show the number of frames 
handled for 30 s, Fig. 7 illustrates the final number of frames 
tested by the different systems for recognition, tracking and 
being dropped. Whereas the recognition and tracking pro-
cesses should take as many frames as possible, the dropped 
frames should be kept as minimal as possible. In conclu-
sion, the worst-performing object recognition system was 
OpenCV, which discarded more frames than tracked in con-
trast to our approach, which was the best-performing object 
recognition system in this group.

Figure 8 depicts a stacked bar graph of the four differ-
ent object recognition pipelines (preprocessing, recognition 
and tracking). Each bar in the chart represents one object 
recognition pipeline.
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The results obtained by OpenCV and TensorFlow pipe-
lines demonstrated that there is still much room for enhance-
ment to achieve smoother recognition even on a latest-gen-
eration smartphone. Nevertheless, the limitations of these 
frameworks are exposed when working on Snapdragon 

GPUs with a process time of lower than one frame per sec-
ond. Our integrated approach takes the best of each state of 
the art platform, thereby being 88% faster than Open- CV, 
86% faster than TFL and 7% faster than Snapdragon.

Although the accuracy does not depend on the ML plat-
form, we present a screenshot (Fig. 9) taken from the pro-
posed system. This image was taken at the University of 
the West of Scotland premises and after preprocessing in 
the system, our system was able to recognise the objects 
including most of the cars parked and one person walking 
at high accuracy.

In terms of parameters that affect the performance of 
constrained environments, the battery consumption is very 
similar to the state-of-the-art ML platforms. While our 
approach has a battery drainage of 680 mAh, the others have 
720 mAh. In terms of temperature, our approach achieves a 
plateau of 43 degrees, three degrees less than standard ML 
platforms.

5.3  Evaluation of the approach in a real scenario

As stated previously, we have deployed and tested stand-
ard YOLOv3 in the scenario to stress the system. In this 
subsection, we will focus on executing our approach with 
an algorithm designed for constrained environments, such 
as Tiny-YOLOv3. This model was trained with the popu-
lar COCO data set. While computationally expensive algo-
rithms (Faster R-CNN, YOLOv3, SSD) achieve more than 
45% of accuracy, Tiny-YOLOv3 obtained an accuracy of 
33.1 mAP with a model size of only 33.8 MB which is more 
suitable for constrained environments. Although the accu-
racy is lower in comparison to computationally expensive 
algorithms, this model is able to detect big/medium size 
objects with good accuracy and can still be used for use 
cases in this regard in constrained environments which is not 
possible when using computationally expensive algorithms; 
It, however, loses accuracy for small size objects.

Fig. 7  Representation of the frames recognised, tracked and dropped 
for each machine learning platforms for 30 s
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Figure 10 shows the number of frames per second (out of 
24) treated by each process. As apparent in the figure, the 
Tracker performs at an average of 22.2 fps, leading to an 
average of 1.8 dropped fps. These results provide a percep-
tion of real time for the final user. Regarding the recognition, 
Tiny-YOLOv3 achieves 17.3 fps. The recognition time starts 
when the frame is read from the queue in the recognition 
thread and stops when the results are shown on the screen 
including preprocessing, CNN execution and postprocessing 
stages. Nevertheless, if we measure the inference time of 
the CNN model running on the system, we obtain an aver-
age of 47.5 ms per frame (i.e., 21 fps). Our approach with 
Tiny-YOLO just achieves a battery drainage of 520 mAh and 
reaches a plateau of 38 degrees, which is 8 degrees lower 
than standard ML platform approaches. In the following sub-
section (5.4), different bottlenecks are discussed to further 
improve the system.

5.4  Discussion

This subsection further analyses the time breakdown of dif-
ferent stages and the bottleneck in the system focusing on 
our approach. As shown in Fig. 8, each stage (preprocess-
ing, recognition and tracking) can be evaluated separately 
in the whole object recognition pipeline. For a real scenario 
as described in Sect. 5.3, the most time-consuming stage is 
the recognition process with 47.5ms per frame, representing 
the 83.92% of the whole object recognition pipeline. For 
preprocesing, OpenCV took 9.1 ms (15.26% of the whole 
system) being the fastest in the whole object recognition sys-
tem. Finally, the least time-consuming stage is the tracking. 
The tracking process merely took an average time of 21ms 
per frame, although we did not discuss this process as the 

implementation of the Tracker did not cause any delay in the 
proposed solution due to thread parallelism. Any overhead 
related to internal processes of the application or the operat-
ing system was not considered to calculate the duration of 
each stage. Since the videos were recorded at 24 fps, when 
it comes to an ideal system, it took 41.6ms for each frame 
to be processed before being discarded by the new frame. 
Although our approach is able to preprocess in real time 
without losing any frames, the bottleneck lies in the rec-
ognition process. The recognition pipeline lasted 56.6ms; 
hence, our approach was able to process 17.7 frames out of 
24 frames.

Figure 11 depicts a comparison between our approach 
and an ideal framework that is able to achieve real-time 
recognition for each frame and thus does not require any 
tracking stage. The ideal framework presented in Fig. 11 
was obtained by extrapolating the same percentages of our 
system executing Tiny-YOLOv3 on the ideal system. To 
achieve this ideal system, it is expected that the time for the 
recognition process to be reduced in future GPU hardware 
developments. Nevertheless, 9.1 ms spent by preprocessing 
just leaves 32.5 ms for the CNN to recognise objects. This 
means that not only the time for recognition process should 
be reduced, but also the preprocessing should be decreased 
to allow the system to have more time for object recognition. 
Based on this manuscript, our approach is able to reduce the 
inference time by 99.1% in comparison to the basic imple-
mentation. However, there is still an extra 26% to reduce 
to achieve 24 fps in a constrained environment. Several 
approaches could be taken to further reduce the inference 
time [19], such as quantisation techniques or faster feature 
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extraction methods [10]. Nevertheless, they may reduce the 
accuracy. Other techniques such as management of multiple 
GPU cores may lead to a reduction in the inference time and 
it may not affect the accuracy. However, this implementa-
tion is time-consuming as it is not currently allowed by the 
machine learning platforms.

6  Concluding remarks

A novel architecture has been proposed for machine learn-
ing empowered object recognition in smartphone platforms, 
which are typically resource constrained. The proposed 
system takes advantage of the best of its kind in the three 
building blocks from a group of popular machine learn-
ing frameworks, based on an empirical evaluation. Conse-
quently, the system outperformed the alternative approaches 
significantly. The methodology of object recognition system 
was deployed with high accuracy and efficiency. The experi-
ment results have showed close-to-real-time performance of 
17.7 fps speed at 33.1 mAP of accuracy and with a 33.8 MB 
model size. The present study revealed that the proposed 
system has the potential to be further improved towards 
per-frame real-time object recognition on mobile devices. 
Such a capability is expected to contribute to the wide use 
of real-time object recognition applications that require a 
highly mobile platform.
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