A Zero-Touch as-a-Service Active Monitoring
Framework for Virtualized Network Environments

Alireza Mohammadpourz, Chiara Lombardo?, Raffaele Bolla'?, Roberto Bruschi'?, Franco Davoli'2, and Lorenzo Ivaldi!

'DITEN - University of Genoa, Genoa, Italy,
2CNIT - S2N National Lab, Genoa, Italy,

Abstract—In order to fulfill the stringent requirements of 5G
applications, measuring the performance of the VNFs composing
the network slices is crucial to identify potential bottlenecks of
the networks. However, since the VNF behavior is time varying
and strongly depends on the infrastructure and hosting execution
environment, the traditional traffic generators are not suited for
the evaluation as their overhead, both in terms of deployment
time and code complexity, may affect the results to the point of
corruption. In order to overcome this issue, this paper presents
a software traffic generator, based on TRex and executed in a
VNF, which leverages on an automation framework to provide
zero-touch as-a-Service active monitoring. Results show that the
impact of this solution on the measured performance is negligible
in terms of deployment time as well as required input lines.

Index Terms—Traffic generator, network performance, NFV,
5G

I. INTRODUCTION

The upcoming Fifth-Generation (5G) of radio mobile net-
works constitutes the second wave of the data revolution in
which new innovative services and models can play a key role
in the digital transformation towards a new hyper-connected
society [1], [2]. 5G-ready applications can be composed of
independent, cloud-native “microservices” [3] running on
individual execution environments (e.g., Virtual Machines —
VMs, or containers) deployed across multiple facilities and
connected via network slices, which represent logical end-
to-end networks, composed of Virtual Network Functions
(VNFs), providing specific 5G Network Services (NSs). In
order to fulfil the stringent requirements of these applications,
the NSs composing a slice must be designed, developed and
managed in ways that guarantee a satisfying Quality of Service
(QoS). To this end, performance measurement is crucial to
identify potential bottlenecks of the networks.

Traditionally, traffic generators have been an essential tool
to evaluate the performance of networking environments [4].
Their main job is to inject synthetic packets into the networks
so that the characteristic of the generated traffic must be
similar to the characteristics of the real one in the networks.
Traffic generators are implemented over both hardware and
software platforms. Hardware-based solutions are more precise
and typically give better performance but they are expensive
and in many cases inflexible. Software-based platforms are

978-1-6654-0522-5/21/$31.00 ©2021 IEEE

less precise and suffer from a lack of performance but they
are cheaper, more flexible, and often open-source [5].

However, monitoring the performance of individual VNFs
is a non-trivial task, as their behavior is heavily affected
by a number of factors, spanning from the server/datacenter
in which they are instantiated, the computational capacity
of the execution environment hosting them, as well as their
time-varying nature. While several tools are available for the
monitoring of network KPIs in the cloud [6], it is hard to find
a counterpart for the end-to-end evaluation.

In this paper, we defined a software traffic generator as a
service to measure the performance of the virtual networks
used in a fully virtual environment. By leveraging on an
automation framework to reduce both runtime and setup
complexity, our solution exploits the TRex traffic generator
[7] in a VNF utilized as a zero-touch as-a-Service for active
monitoring the performance of the NSs in different virtual
environments.

Tests are performed to evaluate the time of deploying the
TRex traffic generator and the ratio of the automation lines
compared to the received REST message. Results show that
the time ascribable by the automated deployment is negligible
enough not to corrupt the measurement and a fully configured
traffic generator can be created from a simple REST POST
message in a fast, easy and automated way.

This paper is organized as follows. Section II proposes a
state of art about different types of traffic generators and
categorizes them considering their architectural features and
the working layer. Section III introduces a short description of
the NFV Convergence Layer (NFVCL) project and describes
the TRex blueprint along with the required REST POST
message. The evaluation of this study is provided in Section
IV, and conclusions are drawn in Section V.

II. TRAFFIC GENERATORS

Traffic generators have been a crucial tool to validate
network performance for a long time. For this reason, there
are plenty of such tools, both proprietary and open source,
which have been developed to work at different architectural
layers and highlight multiple performance metrics.

So-called replay engines use previous traffic captures as
testing streams. Among others, TCPivo [8] is based on com-
modity hardware and open source software and uses tcpdump

as its main trace collection tool. EAR [9] is also a replay
but it is specifically suited for WLAN networks, as it allows
transferring a packet-level capture into a sequence of events
that follows the IEEE 802.11 protocol. [10] follows a similar
approach but its focus is on testing realistic traffic conditions
and rate in a cost-effective fashion.

Linux kernel-level generators are commonly used for testing
end-to-end network performance. Iperf [11] is a very popular
user-level software that allows testing bandwidth, delay jitter
and loss ratio characteristics. Brute [12] is specialized for
very high bitrates and has extensibility as its main advantage,
while Kute [13] is specifically suited for UDP generation and
reception.

Synthetic generation, based on statistical models, is also
a widespread technique. For example, MGEN [14] generates
real-time, packet-level traffic patterns by leveraging on differ-
ent stochastic models, while D-ITG [15] is a network workload
generator that can produce traffic for a wide range of network
scenarios by means of a Hidden Markov Model approach.

Finally, it is worth mentioning automatically configurable
traffic generators, able to work at a higher level, which exploit
live measurements to generate traffic that is very similar to the
original one. In this respect, HARPOON [16] is a flow-based
traffic generator that can mimic net-flow-based measurements.
It can analyze the real measurements and extract the required
parameters to create synthetic traffic with characteristics near
the original traffic. LiTGen [17] is an open-loop, packet-level
traffic generator. It can generate traffics related to the aggre-
gated applications such as web, mail, and P2P by extracting
parameters such as session and object characteristics from real
measurements.

While the above-mentioned generators, like the majority
of the available tools, can cope well with any features of
traditional networks, it is very hard to do the same in the
presence of NFV. In fact, traditional methodologies cannot
isolate the VNF performance from its execution environment
(e.g., datacenter/server feature, VM flavors, etc.). Moreover,
the time-varying nature of its performance and the impact of
orchestration/scaling call for a tool that is highly reliable and
can run in an automated fashion.

In this study, we use one of the most powerful traffic gener-
ators, TRex, and integrate it with our automation system [1].
TRex is an open-source, low-cost, stateful, and stateless traffic
generator fueled by DPDK [7] that generates and analyzes
layer 4-7 traffic and provides capabilities of commercial layer
7 tools in one package. It is a traffic generator based on pre-
processing and smart replay of real traffic templates which
generate the traffic both for the server and client-side at a low
cost. It can scale up to 200Gb/s for one network interface card
and is able to generate client-side protocols such as ARP, IPv6,
IGMP, ICMP, DOT1X, DHCPv6, and some others to simulate
a scale of clients and servers. TRex supports two modes, state-
ful and stateless. While in stateful mode, the basic building
block is a flow/application (composed of many packets), i.e.,
it supports NAT and layer 7 application emulation but, in
this mode, it does not support packet field modification and

tunneling (in some cases) [7]. In stateless mode it is possible to
define a stream with one packet template, to define a program
to change any fields in the packet, and to run the stream in
one of the following modes: Continuous, Burst, Multi-burst.
The stateless mode does not support learning NAT translation,
as there is no context of flow/client/server. The stateless mode
is much more flexible and enables one to define any type of
packet and build a simple program.

III. AUTOMATION PROCESS

In order to provide automated control of the network and
computing resource pools, one needs to properly realize and
manage end-to-end network slices and applications. In this
way, Telecommunication Operators (TOs) aimed to separate
network functions from the purpose-built devices and imple-
ment them as software.

Hence, some of the large TOs formed an industry specifica-
tion group within the European Telecommunications Standards
Institute (ETSI) to define the NFV in Oct. 2012 [18]. One
of the goals of ETSI is to provide a Zero-touch network
and Service Management (ZSM) framework targeting the
full automation of end-to-end network services on top of
the services provided by ETSI [1]. Nowadays, in a network
operator environment, the number of use cases for NFV has
increased and the demand for more infrastructure flexibility is
a strict requirement. In such a complex network environment,
ETSI proposed Open Source MANO, (OSM) which has all
the capabilities required to manage this hybrid network in-
frastructure [19]. The most complex part of MANO is the
configuration of NSs.

According to ETSI, MANO includes three main entities,
namely: i) Virtualized Infrastructure Manager (VIM) that
manages and controls the Network Function Virtualization
Infrastructure (NFVI) resources such as network, compute,
and storage, ii) VNF Manager (VNFM) that is responsible
for managing multiple VNF instances such as VNF instan-
tiating, updating, searching, extension, and termination, and
iii) NFV Orchestrator (NFVO) that is mainly responsible for
orchestrating NFVI resources and managing the lifecycle of
VNFs. In fact, a NS can be composed of several VNFs to
be orchestrated and chained by the NFVO. In summary, the
main responsibilities of these entities are NFVI management,
resource allocation, function virtualization, and so forth [20].

Moreover, the MANO solution should handle all the con-
figuration steps defined as Day-0, Day-1, Day-2, and their
vendor-specific differences. The resulting package should
include all the requirements, instructions, and elements to
achieve these lifecycle stages. Day-0 operations represent the
basic instantiation, which requires the configuration of the
network interfaces, basic security, and the configuration of a
communication framework. Day-1 operations, i.e., service ini-
tialization, end when the communication framework is enabled
and the NS is accessible on the management network. Day-2
operations correspond to run-time operations, and one of the
NFV requirements is that it will still need active management

NFVCL

identify NS
select blueprint
WNF configurations v

Day-0/1 op

Day-2 operations

REST POST message

_ NFVO
VNFC =
(2]
WNEM o

TRex VM

Fig. 1. The process of creating TRex VM through using NFVCL and OSM.

when the NS is active. For instance, one needs to do further
configuration as well as continuous health monitoring. [19].

In this work, we utilized a specific micro-service, the
NFV Convergence Layer (NFVCL) [1], which provides the
level of abstraction required for the flexible and high-level
lifecycle management of instantiated NSs, VNFs, and Physical
Network Functions (PNFs). The NFVCL applies Day-0/1/2
operations through communication with OSM, and produces
and onboards the ETSI SOL006 [21] descriptors of services
and related Virtual/Physical/Container Network Functions onto
the NFVO, by defining the needed number of virtual links
and of virtual resources to be applied (Day-0); then, it asks
the NFVO to instantiate the network services and defines the
networks and computing resources, as well as the network
functions attach points (Day-1), it produces the configuration
files and commands for each of the deployed VNFs, and
applies them through the VNF Managers (VNFMs) at the
NFVO (Day-2).

The foundation of NFVCL lies on the “network service
blueprint”. As is shown in Fig. 1, a blueprint provides a
high-level network template with a pre-determined set of
optional/mandatory capabilities that can be customized on
the basis on the specific requirements. Inside the blueprints,
several software plugins, called VNF Configurators (VNFCs),
are made available to provide all information regarding the
Day-2 operation primitives for each VNF. Moreover, after the
creation the TRex Virtual Machine (VM), the NFVCL uses
the OSM VNFM, which can be realised as Juju charms or
Helm charts. They are automation tools used for simplifying
the deployments of software applications. In our work we
developed an Ansible playbook used by the Juju charm to
install TRex and its dependencies, create its configuration files,
and also configure the TRex VM.

Thus, in this paper, we exploited the concept of the
blueprints in NFVCL to develop a ZSM TRex traffic generator.
Since the need for measuring the performance of the virtual
networks is crucial in designing the VNFs, our traffic generator
as a service allows to measure the performance of the virtual
devices and virtual networks through only a few lines of REST
POST message.

A. The TRex Blueprint

In order to apply the TRex traffic generator in the NFVCL
project, one needs to create a specific blueprint. Besides
Day-0/1 tasks, Day-2 operations are implemented in an extra
module that is called inside the TRex blueprint. As mentioned
in Section III, this function uses an Ansible playbook for
automation, i.e, it installs and runs a fully configured TRex
application inside the generated VM. It also checks the valida-
tion of the arriving REST POST message and sets the default
values for the parameters which are mandatory for feeding the
Ansible playbook but are not defined inside the REST POST
message.

It is worth mentioning that TRex uses one management
network interface for managing the VM, and at least two
extra virtual Network Interface Cards (NICs), belonging to
two different networks IP addresses, one for transmitting the
generated data and the other one for receiving the transmitted
data. The number of the virtual NICs and their names must
be provided for NFVCL through the REST POST message.
The TRex blueprint not only creates a Linux-based VM but
also updates and installs the prerequisites for running TRex. It
installs the latest version of the TRex application and creates
its directory in the TRex VM and then runs TRex at the first
startup. Moreover, TRex blueprint not only saves the output
of the TRex first run on the TRex VM root directory, but also
returns these results to the terminal.

To be able to run TRex, in particular at the first startup of the
VM, TRex needs to be fully configured, and the required in-
formation is provided through the REST POST message. This
information leads to the creation of two main configuration
YAML files named trex_cfg.yaml and cap_customized.yaml.
The former, provided by the TRex blueprint using the Ansible
playbook, is responsible for configuring TRex behavior and
is located inside the TRex VM. As it is shown in Fig. 2,
there is some mandatory information needed to be defined in
this file such as port_limit, version, interfaces, port_info (ip,
default_gw).

The port_limit has to be equal to the number of interfaces

- version: 2
interfaces: ['ens4’, 'ens5]
port_info:
-ipr 10.0.10.195
default_gw: 10.0.10.254
-ip: 10.0.11.35
default_gw: 10.0.11.254

platform:
master_thread_id: 0
latency_thread id: 1
dual_if:
- socket: 0
threads: [2.3]

Fig. 2. A simple example of generated trex_cfg.yaml file. The generated TRex
VM has 8G RAM, 8 vCPUs and two extra NICs which are automatically
named as ’ens4’ and ’ens5’. The extra NICs IP addresses and their default
gateways are taken from input REST POST message.

that are provided by the REST POST message. An even
number of extra interfaces should be chosen; otherwise, only
the first two interfaces are considered. Regarding these addi-
tional networks, the names of the interfaces are automatically
generated and are inserted in the inferfaces section of the
trex_cfg.yaml configuration file. The created information in
port_info section of the trex_cfg.yaml configuration file is
provided by the REST POST message. For more information
related to the optional sections, please refer to [7].

One of the optional sections that can be set in the con-
figuration file is platform. This section is used to define more
information about interfaces pairs and one can provide specific
details such as hardware thread id for the ”Control thread” and
”RX thread” in master_thread_id and latency_thread_id fields,
respectively. Moreover, the “dual_if” section defines informa-
tion for interface pairs (according to the order in “interfaces”
list) in which each section starting with ”- socket” defines
information for different interface pairs including hardware
threads.

TRex simulates clients and servers and generates traffic,
see Fig. 3, according to the pcap files provided during the
installation of TRex VM. Figure 3 shows that TRex contains
the client-side and server-side, in which different ranges of IPs
for clients and servers must be defined. The traffic generated
by the clients and servers should pass through the Device
Under Test (DUT), which could also contain a network.

In order to define the type of traffic generated by TRex, one
needs to configure a YAML-format traffic configuration file; in
our automation process, it is named as cap_customized.yaml.
The considered range of IP addresses for clients and servers,
and the type of traffic, indicated by the pcap files, are defined
in this file. The type of traffic can be chosen from “http”,
“sfr”, “tcp” and so forth, with respect to the different types
supported by the TRex traffic generator. Defining ’sfr’ in the
REST POST message means that one needs to generate all
types of traffics which can be generated by TRex [7].

All of the parameters mentioned in Fig. 4 can be defined
through REST POST messages however, for all of them, a
default value is considered to be set since this configura-
tion is mandatory for example, the value of connections per
second (cps)=1.1, inter-packet gap (ipg)=1000us, round trip
time (rtt)=100us, and weight (w)=1. It is worth mentioning
that weight indicates the IP generator how to generate the
flows. For instance, w=2 means that two flows from the same
template will be generated in a burst. The IP address of
the ports and their network masks are provided through the
REST POST message. These network masks and IPs are also
used to configure the VM interface IP address. Moreover, the
interfaces’ IPs, the clients’ IP range, and servers’ IP range (the
starting and ending IP) are also needed to provide inside the
REST POST message. Figure 4 shows an example of HTTP
customized by the TRex blueprint for the target VM. Each
TRex client/server “dual-port” (pair of ports, such as port O
for the client, port 1 for the server) has its own generator
offset, taken from the configuration file. The reason for the
“dual_port_mask” is to make static route configuration per

TRex machine |

s TRex clients side
client '—3 Port 0 e
Elient ‘ N

o J \‘

- =

TRex server side
SEIVEE .
-

server 3 Port 1 P
mﬁ”’
L

Fig. 3. TRex components.

- duration : 0.1
generator

distribution : "seq"
clients_start : 10.0.10.185
clients_end : 10.0.10.195
servers_start : 10.0.11.35
servers_end : 10.0.11.35
clients_per_gb: 10
min_clients : 101
dual_port_mask : "1.0.0.0"
tcp_aging 1]
udp_aging 1]

cap_ipy :true
cap_info
- name: avifdelay_10_http_browsing_0.pcap
cpsi 1l
ipg : 1000
rit : 1000
Vool

Fig. 4. An example of cap_customized.yaml. The generated TRex VM has
8G RAM, 8 vCPUs and two extra NICs. The type of generating traffic is
defined as HTTP.

port possible. With this offset, different ports have different
prefixes, see [7] for more information. In our configuration,
we leave it as the default value. Moreover, for the rest of the
parameters, the default values are selected and one can find a
full description of them in [7]. The file is generated from the
HTTP sample file in the cap2 folder.

B. REST POST message

Inside the NFVCL project, a REST-API is implemented
which accepts all the required configuration fields via a REST
message. Figure 5 shows a simple example of the REST
POST message. This message has a JSON format and can
be divided into three main sections. The first section of the
RESPT POST message is dedicated to defining the type of
blueprint which in our automation process is TRex. The TRex
configuration section, which is needed for running the TRex
traffic generator, is already explained in Section III-A. As is
shown in Fig. 5, various parameters, mandatory or optional,
such as networks’ and gateways’ IPs, the running duration of
the TRex traffic generator, the type of traffic, and the range
of clients and servers inside the TRex are provided in this
section of the REST POST message. The last section includes
a list of data consumed by the VIM in order to create the
virtual machine inside the given OpenStack. In particular, the
machine will be created inside the defined Open Stack and it

type": "trex > Blueprint type

config™

—» TRex configurations

"tenant
"mgt’; "mngn-unf-os"
"extra-nets™: [

name": *net1" —» VM configuratiions

{
}
{
name": “netz”
}
1
}
1

i

Fig. 5. A REST-API POST message example. It contains three main sections
for defining the type of blueprints, TRex configuration information and VM
configurations information.

provides the required details, such as the name of the targeted
OpenStack and its project name, the management network
which is provided for managing the VM; since TRex requires
at least two extra network interfaces, these interfaces must be
defined also in this section. As noted, the number of interfaces
must be even.

IV. EVALUATION RESULTS

In order to evaluate our work, we propose two main param-
eters, firstly the time of deploying the TRex traffic generator
and secondly the ratio of the automation lines compared to the
received REST message.

A. Time of Deploying

As mentioned before, the goal of this service is to evaluate
the performance of the virtual network environment regarding
the measurements done by the traffic generator; hence, the
starting time of the service is an important parameter. This
time highly depends on the hardware and the Internet speed
(particularly for Day-2 operations); hence, the required time
for the automation process can be divided into different steps.

Firstly, the time required for building packages and on-
boarding them on OSM, Day-0 operations. Secondly, the time
required for configuring resources and NSs and asking OSM
to initiate these NSs, Day-1 operations. And finally, the time
required for Day-2 operations, i.e., initiating VMSs, updating
services, installing pre-requisites and TRex, configuring, and
running TRex. Figure 6 shows a comparison between the
required time for each step when the number of network
interfaces changes by 2, 4, 6, 8, and 10 in the REST POST
message. All the created TRex VMs have the same config-
uration, i.e. 8G RAM and 8 vCPUs, and only the number
of interfaces has been changed. Figure 7 and Fig. 8 show the
spent time for different steps regards the variation of dedicated
RAM and vCPUs to the VMs, respectively.

As is expected, at a higher number of interfaces, RAM,
and vCPUs, the required time for NFVCL to carry out each

Fig. 6. The required time for each step in the project based on different
number of interfaces.

Time required for each step

dayo o
buildpackages onboarding
start

Steps

Fig. 7. The required time for each step in the project based on different
amount of RAM.

step varies slightly. In other words, adding more interfaces,
RAM, and vCPUs will not impose considerable extra time to
the automation process, while the added automation task in
the background could be considerable if one needs to apply
the changes manually. It is worth noting that the main time
consumption is related to the Day-2 operations which are not
dependent on our automaton process in NFVCL and can also
vary regarding the TRex running time duration.

B. Ratio of Automation

This paper focused on the TRex configurations; however
other necessary configurations, e.g. NSD and VNFD, are done

Time required for each step

day0 day0
buildpackages onboarding
start stare

Steps

Fig. 8. The required time for each step in the project based on different
number of CPUs. There are 2 extra interfaces for each implementation.

automatically through the NFVCL. One may refer to [1] for
more information.

In this work, the specification of the VM is assumed to
have 8 CPU cores and 8G RAM. Only the number of extra
interfaces used for TRex is imported as an input by the
REST message and one management network is configured
as default. It is worth mentioning that if the number of extra
networks increases, the dedicated virtual CPUs also increase
automatically. However, in this work, we assumed to have only
two extra network interfaces used for TRex VM besides the
management network.

Since the implementation time highly depends on the hard-
ware of the server, we propose another measurement value
named as the ratio of automation, that is, the ratio between
the number of input lines in the REST POST message and
the automated configured lines for creating NSD, VNFD,
trex_cfg.yaml, and customized_cap.yaml files.

Table T shows the number of configured lines for each
configurations files separately. The number of lines in the
REST POST message that are mandatory for running TRex
can be defined almost in 15 lines, as shown in Fig. 5.
Therefore, the ratio of automation can be approximately 56.5,
meaning that for each line of the REST POST message we will
have 56.5 lines of automaton. Note that in our computation the
lines required to install TRex and its prerequisites are omitted
from this ratio, i.e., only the created lines for configuration
files are considered. Regarding the ratio of automation, one
can find that by providing a simple REST POST message, a
fully configured traffic generator will be created and the results
of generated traffic will be received. These results can be used
to analyze the DUTs, which is a concern in the networking
design and debugging.

TABLE I
NUMBER OF CONFIGURED LINES IN EACH CONFIGURATIONS FILES.

Input lines
POST message

Output lines

NSD VNFD trex_cfg customized_cap ansible playbook

15 527 97 14 20 189

V. CONCLUSION

This paper proposed the TRex traffic generator as a VNF
implemented through an automation process via NFVCL. It
provides both the ability to configure TRex through REST
POST messages and return its output and access to the created
VM via SSH or removing the VM from OS. Since the required
time to run is low, and also the difficulty of setting up this
VNF (shown by a high ratio of the automation) is very low,
this VNF can be utilized as a zero-touch as-a-Service active
monitoring in different virtual environments to measure the
performance of the NSs.

ACKNOWLEDGEMENT

This work has been supported by the Horizon 2020 5G-
PPP Innovation Action 5G-INDUCE (Grant Agreement no.
101016941)

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

REFERENCES

R. Bruschi, J. F. Pajo, E. Davoli, and C. Lombardo, “Managing 5g
network slicing and edge computing with the matilda telecom layer
platform,” Computer Networks, vol. 194, 2021.

D. Soldani and A. Manzalini, “Horizon 2020 and beyond: On the 5g
operating system for a true digital society,” IEEE Vehicular Technology
Magazine, vol. 10, no. 1, pp. 3242, 2015.

D. Szabé, F. Németh, B. Sonkoly, A. Gulyds, and F. H. Fitzek,
“Towards the 5g revolution: A software defined network architecture
exploiting network coding as a service,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 105-106, 2015.

P. Emmerich, S. Gallenmiiller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proceedings
of the 2015 Internet Measurement Conference, pp. 275-287, 2015.

A. Botta, A. Dainotti, and A. Pescapé, “Do you trust your software-based
traffic generator?,” IEEE Communications Magazine, vol. 48, no. 9,
pp. 158-165, 2010.

“Prometheus - from metrics to insight - power your metrics and alerting
with the leading open-source monitoring solution.” https://prometheus.
io.

“Trex realistic traffic generator.” https://trex-tgn.cisco.com/.

W.-c. Feng, A. Goel, A. Bezzaz, W.-c. Feng, and J. Walpole, “Tcpivo:
A high-performance packet replay engine,” in Proceedings of the ACM
SIGCOMM workshop on Models, methods and tools for reproducible
network research, pp. 57-64, 2003.

C.-Y. Ku, Y.-D. Lin, Y.-C. Lai, P.-H. Li, and K. C.-]J. Lin, “Real traffic
replay over wlan with environment emulation,” in 2012 IEEE Wireless
Communications and Networking Conference (WCNC), pp. 2406-2411,
2012.

T. Ye, D. Veitch, G. Iannaccone, and S. Bhattacharya, “Divide and
conquer: Pc-based packet trace replay at oc-48 speeds,” in First Inter-
national Conference on Testbeds and Research Infrastructures for the
DEvelopment of NeTworks and COMmunities, pp. 262-271, IEEE, 2005.
C.-H. Hsu and U. Kremer, “Iperf: A framework for automatic construc-
tion of performance prediction models,” in Workshop on Profile and
Feedback-Directed Compilation (PFDC), Paris, France, Citeseer, 1998.
N. Bonelli, S. Giordano, G. Procissi, and S. Raffaello, “Brute: A
high performance and extensibile traffic generator,” in Int’l Symposium
on Performance of Telecommunication Systems (SPECTS’05), vol. 1,
pp. 222-227, 2005.

Zander, Sebastian and Kennedy, David and Armitage, Grenville, “Kute
A high performance kernel-based udp traffic engine,” in Swinburne
University of Technology. Centre for Advanced Internet Architectures,
2005.

“Multi-generator (mgen) network test tool.” https://www.nrl.navy.mil/
Our-Work/Areas- of-Research/Information-Technology/NCS/MGENY/.

S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ventre, “D-itg
distributed internet traffic generator,” in First International Conference
on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceed-
ings., pp. 316-317, IEEE, 2004.

J. Sommers and P. Barford, “Self-configuring network traffic genera-
tion,” in Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, pp. 68-81, 2004.

C. Rolland, J. Ridoux, B. Baynat, and V. Borrel, “Using litgen, a realistic
ip traffic model, to evaluate the impact of burstiness on performance,”
in Proceedings of the Ist international conference on Simulation tools
and techniques for communications, networks and systems & workshops,
pp. 1-8, Citeseer, 2008.

“ETSI, NFV white paperl .” Available at https://portal.etsi.org/NFV/
NFV_White_Paper.pdf.

“Open Source MANO.” Available at https://osm.etsi.org/wikipub/index.
php/Main_Page.

B. Yi, X. Wang, K. Li, M. Huang, et al., “A comprehensive survey of
network function virtualization,” Computer Networks, vol. 133, pp. 212—
262, 2018.

“ETSI GS NFV-SOL 006, ’Network Functions Virtualisation (NFV)
Release 2; Protocols and Data Models; NFV descriptors based
on YANG Specification’, V2.7.1, 2019.” https://www.nrl.navy.mil/
Our- Work/Areas- of-Research/Information-Technology/NCS/MGEN/,
2019.

