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Abstract—Beside increasing flexibility and programmability,
the current network “softwarization” trend is believed to be
beneficial also in respect of energy efficiency, owing to the
consolidation of resources made possible by virtualized net-
working components. However, the widespread use of general-
purpose hardware may jeopardize energy saving, unless proper
control strategies are put in operation. In this context, the paper
addresses a “smart sleeping” control problem, where computing
resources in multi-core processors executing network functions
are modelled as multi-server queues, and the number of active
processing units (either physical or virtual) can be dynamically
adjusted by parametric control over a time scale compatible
with the long-term dynamics of the traffic flows that require
processing. We show that, on average, up to 25% of processing
capacity of a network node can be turned off in the presence of
bursty traffic with low load without significantly affecting packet
latency.

Index Terms—Energy efficiency, MEC, hardware offloading

I. INTRODUCTION

OVER the past two decades, the aspect of energy effi-
ciency of telecommunications equipment and networks

has been a concern, spawned by the increasing attention
toward a “green” approach to the industrial evolution. Start-
ing from data center operations [1] then covering wireless
networking [2] and the “traditional” Internet Protocol (IP)
fixed network [3], the attention on the theme has been slightly
decreasing with the advent of network virtualization and “soft-
warization” brought forth by Software Defined Networking
(SDN) [4] and Network Functions Virtualization (NFV) [5],
with some notable exceptions [6]. Indeed, with the advent of
virtualization technologies, wired-wireless integration, Mobile
Edge Computing (MEC) and the greater presence of cloud-
native applications at the network edge, the attention to energy
efficiency aspects has tended to shift more to the wireless
segment, in the belief that virtualization would increase energy
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efficiency of the fixed network, owing to consolidation of
resources in the presence of low traffic load.

We believe that the topic is bound to the forefront again
with the evolution toward the 6th generation mobile network
(6G), where very ambitious goals are being set also with
respect to energy efficiency [7]. However, in this context “soft-
warization” and increased network automation per se would
not be sufficient to increase energy efficiency, especially in
the fixed network segment. Notwithstanding the consolidation
of resources made possible by virtualized networking com-
ponents [8], the widespread use of general-purpose hardware
may jeopardize energy saving, unless proper control strategies
are put in operation [9].

To trade off energy consumption and performance, suitable
dynamic control techniques are needed. Possible approaches
to derive them may stem from dynamic flow-based models,
from queueing models suitable for parametric optimization,
or from machine learning techniques (see, e.g., [10]).

The approach we take in this paper relies on queueing
models and on the adaptive adjustment of the processing
capacity, on a longer time scale with respect to the dynamics
of queues. We adopt an Mx/G/N queueing model [11] to
represent the processing units that perform a specific network
function on packets that are queued for service. According to
the model, packets arrive in batches. The latter are supposed
to be generated by flows that require the specific treatment
offered by the given network function. The dynamics of flows
is also represented by a queueing model, with time scales
much longer than those characterizing burst arrivals and packet
service times.

This overall representation of flows and bursts can be used,
in one case, to model the offloading of network functions
to specialized programmable hardware to implement Physical
Network Functions (PNFs) that substitute Virtual Network
Functions (VNFs) in critical applications requiring very fast
processing. These may be encountered, among other cases,
in the MEC environment, where packets incoming from



applications running on User Equipment (UE) devices to
MEC attach points may need to be filtered and directed to
external networks for further processing, rather than being
forwarded to the mobile network backhaul. On the other hand,
in the more frequent cases where VNFs are implemented via
software in containers, the servers in the queueing system
may represent the virtual processors, and the model can be
adopted to decide when new processing instances of the
containerized VNF should be activated to support horizontal
scaling. Obviously, the power consumption of PNFs and VNFs
will be different: in the virtualized case, it would refer to the
fraction of physical processing units utilized by the virtual
entity, whose precise attribution is not straightforward, though
some advances in standardization are paving the way toward
it [12]. However, in any case, the power consumption will be
dependent on the number of active physical processing units
(e.g., P4 switches [13] or cores); the latter can be mapped to
servers in the queueing model that represents a given VNF
or PNF. Therefore, putting processing units to sleep - i.e.,
to low power states - in the presence of low workloads, and
waking them up when an increase in workload would jeop-
ardize performance, is equivalent to de-activating/activating
servers in the queueing model and may significantly reduce
the power consumption without affecting performance. The
relation between power consumption and the number of active
cores in multi-core processors has been investigated, among
others, in [14], where it is shown to be roughly proportional
(or piecewise linear) with respect to the number of active cores
at a given operating frequency. This correspondence between
active cores and power consumption is the motivation behind
our work in the present paper, where we want to evaluate the
effectiveness of an analytical queueing model to implement
a simple approach for the reduction of energy consumption,
based on the determination of the minimum number of active
processing units capable of maintaining a given upper bound
on the average packet latency.

The paper is organized as follows. We introduce the traffic
models at all levels (packet, burst and flow) in the next
section, along with a simplifying hypothesis on their mu-
tual interaction. A simple control strategy to trade off delay
performance and energy saving, by switching on and off
processing units is outlined in Section III. Section IV presents
and discusses numerical results on the model behavior and on
its performance when used to implement a control strategy
in the presence of real traffic traces. Section V contains the
conclusions and directions for future work.

II. TRAFFIC MODELING AT MULTIPLE TIME SCALES

We consider a node in the edge, either performing PNF
functionalities (e.g., as a set of P4 switches) or supporting
containerized VNFs, operating on up to a maximum number
Nmax of processing units. Our control goal here is to determine
the minimum number of active units (N ≤ Nmax), represented
by servers in the queueing system, required to achieve a
desired upper bound on average latency, represented by the
waiting time in the queue. Conversely, the goal could be set

to the minimization of waiting time with respect to the number
of active processing units under a given power constraint,
corresponding to an upper bound on the number of active units.

Modelling the node as a multi-server queue might reason-
ably (roughly) approximate the situation where an incoming
burst is directed to the processing unit with the lowest work-
load (in bits) at the moment of flow arrival (the model would
actually correspond to such assignment if it were done on
a packet-by-packet basis, disregarding flows and bursts - see
[15], pp. 166-167).

We assume in this paper that the task execution of the
functionality to be performed by the PNF or the VNF on in-
coming packets may be represented by a deterministic service
time D. This may be the case, for instance, of a User Plane
Function (UPF) [16] intercepting S1 Application Protocol (S1-
AP) messages and parsing their content against the information
available at the Network Service Provider (NSP) Operations
Support System (OSS).

We adopt a bursty traffic model, where the incoming traffic
of each flow can be modelled as Poisson burst arrivals with
Zipf-distributed length (in pkt/burst), whenever N processing
units are active. Then, we are in the presence of an Mx/D/N
queueing system, whose stationary distribution can be deter-
mined analytically [11]. It is worth noting that, in the case of
a single traffic class (i.e., traffic generated even by different
flows, but with the same statistical characteristics, whose
bursts are superposed) under deterministic service times, this
model guarantees the conservation of packet/task ordering at
the receiving end. We suppose further that the bursts being
multiplexed in the queue are generated by a number M of
flows, whose statistical distribution is given by a birth-death
model: flows are generated by a Poisson distribution with
parameter λf and have an exponentially distributed duration
with parameter µf . The flow in this case can represent the
minimum granularity adopted by the network operator to
group, according to some criterion, requests and data from
UEs that are forwarded to a specific micro data center in the
edge. All the notations are summarized in Table I.

Let β be the average burst length in packets, λ the burst
arrival rate per flow, and M the random variable representing
the number of active flows. Then, conditioning to a realization
m of the number of active flows M , the total packet generation
rate would be mλβ, and the queue utilization factor would be
given by

ρ (m) =
mλβD

N
(1)

Note that the stability of the queue would impose an upper
bound on the number of active flows at any time, which could
be obtained by enforcing an admission control to the flows
accessing the queue, so that

mλβD

N
< 1 =⇒ m < ⌊ N

λβD
⌋ := mmax (2)

where ⌊x⌋ represents the highest integer less than or equal to
x.



TABLE I
TABLE NOTATION

Symbol Description

N Number of active processing units

Nmin Nmax Minimum and maximum number of
processing units

M Random variable representing the number of
active flows

λf 1/µf Average rate and average duration of flow
birth-death model

β Average burst length in packets

λ Burst arrival rate per flow

X Random variable representing the burst size

ρ (m) Utilization factor

m A realization of the number of active flows

Lq (m) Wq (m) Average queue length and waiting time of
the Mx/D/N system with m active flows

pj Probability of having j packets in the
queueing system

πm Probability that m flows are active
(producing bursts) on the queue in front of
the processing units

PB Blocking probability

D µ Packet service time and rate

Af Traffic intensity of the flows

η Timescale of the simulations

λp Aggregate incoming rate (Mpkts/s)

Ψ Average Throughput (in Mpkts/s)

W
∗ Desired upper bound on the average

queueing delay

W q Average packet latency

C0 C7 PU power states used in the model
according to the ACPI specification [17]

Following [11], the average queue length Lq (m) of the
Mx/D/N system with m active flows can be written ana-
lytically as

Lq (m) =
1

2N [1− ρ (m)]

{
[Nρ (m)]

2 −N (N − 1)+

N−2∑
j=2

(N (N − 1)− j (j − 1)] pj+

Nρ (m)

(
E
{
X2
}

β
− 1

)}
(3)

where X is the random variable representing the burst size and
pj , j = 2, . . . , N−2 are the probabilities of having j packets in
the queueing system. The latter can be calculated numerically
by using the Probability Generating Function (PGF) of the
queue length distribution and the inverse Discrete Fast Fourier
Transform (iDFFT) – see [11], p. 396 and Appendices G and
D). Then, by applying Little’s Theorem, the average waiting
time is given by

Wq (m) =
Lq (m)

mλβ
(4)

The reason for computing the average waiting time condi-
tional to a given number of flows stems from the fact that, as
the time scales at the burst- and flow-level are widely different,
it makes sense to consider that variations in the number of
flows would occur on a much longer time scale with respect
to that corresponding to variations in the number of packets
in the queue. Based on this consideration, we can ignore non-
stationary behaviours, and assume that a stationary state in
the queue probabilities can be reached between birth and death
events at the flow level (a precise treatment, based on Courtois’
decomposition, of a somehow related problem can be found
in [18]).

Then, we can further average out the average waiting time
provided by the stationary distribution of our queuing model
with respect to the flow generation; in doing so, we should
take into account the upper limit in Eq. (2). Let Af = λf/µf

[Erlangs] denote the traffic intensity of the flows. Then, the
probability πm that m flows are active (producing bursts)
on the queue in front of the processing units is given by
the stationary distribution of a M/M/mmax/mmax queueing
system:

πm = Prob {M = m} = π0

m−1∏
j=0

Aj
f

j + 1
=

Am
f /m!∑mmax

j=0 Aj
f/j!

(5)

Finally (by conditioning to the presence of at least one
active flow), the unconditional average packet latency can be
written as

W q =
1

1− π0

mmax∑
m=1

Wq (m)πm (6)

III. PERFORMANCE AND ENERGY SAVING TRADEOFF

The model just described refers to a single PNF or VNF pro-
cessing cluster (characterized by a single queue) of processing
units where incoming flows have been diverted. By exploiting
the closed-form expressions obtained, we can formulate a sim-
ple optimization problem with respect to the tradeoff between
the number of active processing units (which is related to the
energy consumption, according to the evaluations in [14]) and
queueing delay. Specifically, for all admissible offered load
values λβ we can state the following

Problem: Let W
∗

be a desired upper bound on the average
queueing delay. We want to determine the minimum number
of active processors that guarantees the upper bound, i.e.,

W q ≤ W
∗

(7)

The admissible offered load values are those determined by
a strict criterion such as that imposed on λβ by the satisfaction
of Eq. (2) for all possible values of N/D with 1 ≤ N ≤ Nmax
i.e., {

λβ :
mλβD

N
< 1 ∀m = 1, . . . ,mmax

}
(8)

We note, in passing, that the case of heterogeneous flows,
both in terms of statistical characterization of parameters
and of performance requirements, is more complex but still
analytically tractable under a suitable setting. As was already
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Fig. 1. Average packet latency for the Single-Flow Multi-Server Queuing
Model with β = 3.17 pkts/burst and µ = 1Mpkts/s, by varying number
of active PUs.

noted in [19] in a slightly different context, in this case the
most advisable and manageable model would be that of service
separation [20], whereby only flows with the same statistical
characteristics are multiplexed together and feed the same
buffer with their bursts.

IV. NUMERICAL RESULTS

We analyze here various numerical results for the deter-
mination of the minimum number of active processing units
that guarantees the latency upper bound. We first compute
the average packet latency time Wq (m) at m = 1 (a single
incoming flow) as a function of the offered load λβ, by
varying the number of active PUs N (servers in our model)
from 2 to 10. For each server, we fix the packet service rate
µ = 1Mpkts/s. Hence, the maximum packet service rate is
µN = 10Mpkts/s when all servers are active, while the
packet service time of our model is D = 1/µ = 1 µs. We
consider three different values for the average burst length β;
namely, 2.06, 3.17 and 5.26.

In the single flow case, the packets are uniformly distributed
among the N servers. Figure 1 shows the average packet
latency Wq (1) (indicated as W for simplicity) for the value
of the parameter β = 3.17 pkts/burst. We do not report the
other cases, as the results show no significant differences with
respect to variations of the parameter β; with all the three
values of β, W is always lower than 35 µs.

With a desired upper bound on the queueing delay W
∗
=

15 µs, the application of the simple rule of activating the
minimum number of processing units capable of maintain-
ing it is shown in Figure 2, always with respect to β =
3.17 pkts/burst. The potential in energy saving is reported
in Figure 3, by simply evaluating (Nmax −N) /Nmax for the
case Nmax = 10. The cases corresponding to the other values
of β present a similar trend.

Regarding the case of stochastic flows (with exponentially-
distributed inter-arrival times and duration, following Eq. (5)
for the probability distribution of the number of active ones),
the average packet latency time W q (again indicated by W
in the graphs) is computed by varying the value of the traffic
intensity Af in Erlangs and by averaging over the distribution
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of active flows. Regarding the parameter λ, we fixed its value
equal to µ/β (i.e., the upper bound to guarantee stability with
a single active processor). Figure 4 shows the trend of W q ,
with β = 3.17 pkts/burst and µ = 1Mpkts/s. In this case,
the values are higher than those in the Single-Flow case. The
delay per packet is averaged over variable active flows, which
can range from 1 up to the maximum allowed for stability.

Figure 5 shows the Average Throughput Ψ (in Mpkts/s)
computed by using the blocking probability PB = πmmax

stemming from Eq. (5), i.e.

Ψ = λβAf (1− PB) (9)

Finally, Figures 6 and 7 show the results of the opti-
mized procedure with W

∗
= 75 µs, µ = 1Mpps and

β = 3.17 pkts/burst. When the average incoming load is less
than 1.30Mpkts/s, it is sufficient to have only 2 PUs active.
With the increase of the incoming traffic load, the number
of active processors necessary to maintain the latency below
75 µs grows (stepwise) almost linearly.

In order to validate the proposed model, we performed an
extensive simulation campaign to use the results as a term of
comparison. We used real-world traffic traces that are publicly
available in [21], increasing the traffic volumes in the original
trace by a scaling factor of 100. The incoming traffic load
has an average value around 5Mpkts/s with maximum values
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Fig. 5. Average Throughput (in Mpkts/s) for the Multi-Flow Multi-Server
Queuing Model with β = 3.17 burst and µ = 1Mpkts/s, by varying
number of active PU.

of almost 10Mpkts/s; the average value of the burst length
approximately equals 3 pkt/burst. In order to save energy
by turning on/off the PUs it is necessary to implement an
optimization procedure that selects the minimum number of
active PUs necessary to ensure a given level of performance.

We performed our simulations considering three different
timescales (indicated by η): 10 s, 60 s and 300 s. The opti-
mization procedure uses a static table, which presents different
values of the pair λp, Nmin, where λp is the aggregate
incoming rate (Mpkts/s) that can be supported by turning
“on” Nmin PUs, while guaranteeing at the same time that
the average packet latency is below a given performance cap
(W

∗
= 90 µs). An example of static table is shown in Table

II.
In this way, the optimization procedure uses the estimates

of β and λ to select the correct value of λp and the relative
minimum number of active PU Nmin necessary to serve the
specific arrival packet rate within the desired average delay.
We fixed the total number of PUs Nmax = 10. Each PU is
modelled by using only two possible power states – according
to the ACPI specification [17]:

• C0, where the PU performs packet processing and it is
able to process 1Mpkts/s. The power consumption in
this state is 35W.

• C7, where the PU does not perform any packet processing
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(we considered it as in an “off ” state) and the relative
power consumption is 26.6 W.

The transition time necessary to wake-up and put to sleep
a PU (from C0 to C7 and vice versa) is set to 140ms.

Figure 8 shows the comparison between the average packet
latency computed by the model and the one measured with the
simulation. The results outline how the error (in %) between
the model and the simulation is, on average, slightly higher
than 5%. In addition, there is an underestimation of the
latency by the model. This underestimation could lead to
a too aggressive policy (from the point of view of energy-
conservation) by the optimization procedure. Indeed, it may
leave a number of active PUs too low to ensure the desired
level of performance. To overcome this problem, it is possible
to set the latency cap W

∗
to a more conservative value.

Figure 9 shows the potential for energy saving, which is
computed considering the relative number of active PUs with
respect to the total number of PUs, whose average value is
about 25%.

The results for the other values of η (not shown) exhibit
a similar behaviour. However, already with η = 60 s, a
smaller number of wake-up and sleep events of the PUs is
observed, owing to the fact that the time horizon of the
optimization procedure is higher than in the previous case.
Hence, in order to respect the performance constraint, the



TABLE II
CORRESPONDENCE BETWEEN INPUT RATE AND NUMBER OF PUS.

Range of λp (Mpkts/s) Nmin

0 < λp < 4.2 5

4.2 ≤ λp < 5.6 6

5.6 ≤ λp < 6.5 7

6.5 ≤ λp < 7 8

7 ≤ λp < 7.5 9

7.5 ≤ λp < 10 10

Error [%]

Trace

Model

Fig. 8. Average packet latency estimated by model and simulation with η =
10 s.

optimization procedure might select each time a number of
active PUs higher than the corresponding one of the previous
cases. Nonetheless, the relative energy saving does not have
significant differences compared to the case with η = 10 s.
With η = 300 s the energy saving is slightly lower than in the
other cases.

V. CONCLUSIONS

We have considered the problem of trading off energy
efficiency and performance (in terms of queueing delay), of
PNFs implemented by dedicated processing units (which may
be employed in lieu of VNFs in critical applications, e.g., to
offload micro data centers in delay sensitive MEC contexts)
or of containerized VNFs. The effect of modulating the power
consumption by switching on and off computing elements on
a longer time scale with respect to that of packet processing
has been investigated based on the adoption of queueing
models, in the presence of multiple flows multiplexed at a
processing node of this kind. Simulation with real traces,
from which model parameters have been estimated, has been
employed to validate the results. Future work will be based
on the application of a stochastic knapsack model, as briefly
mentioned in Section III.
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